版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,從一塊直徑為24cm的圓形紙片上,剪出一個圓心角為90°的扇形ABC,使點A,B,C都在圓周上,將剪下的扇形圍成一個圓錐的側面,則這個圓錐的底面圓的半徑是()A.3cm B.2cm C.6cm D.12cm2.的相反數(shù)是()A. B.2 C. D.3.如圖,在半徑為1的⊙O中,直徑AB把⊙O分成上、下兩個半圓,點C是上半圓上一個動點(C與點A、B不重合),過點C作弦CD⊥AB,垂足為E,∠OCD的平分線交⊙O于點P,設CE=x,AP=y(tǒng),下列圖象中,最能刻畫y與x的函數(shù)關系的圖象是()A. B.C. D.4.已知,則等于()A.2 B.3 C. D.5.如圖,一條拋物線與軸相交于、兩點(點在點的左側),其頂點在線段上移動.若點、的坐標分別為、,點的橫坐標的最大值為,則點的橫坐標的最小值為()A. B. C. D.6.一元二次方程的解是()A.或 B. C. D.7.已知(x1,y1),(x2,y2),(x3,y3)是反比例函數(shù)y=的圖象上的三個點,且x1<x2<0,x3>0,則y1,y2,y3的大小關系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y18.如圖所示,在平面直角坐標系中,點A、B的坐標分別為(﹣2,0)和(2,0).月牙①繞點B順時針旋轉得到月牙②,則點A的對應點A’的坐標為()A.(2,2) B.(2,4) C.(4,2) D.(1,2)9.如圖,在中,,于點,,,則的值為()A.4 B. C. D.710.拋物線y=(x+2)2﹣3可以由拋物線y=x2平移得到,則下列平移過程正確的是()A.先向左平移2個單位,再向上平移3個單位 B.先向左平移2個單位,再向下平移3個單位C.先向右平移2個單位,再向下平移3個單位 D.先向右平移2個單位,再向上平移3個單位11.在一個晴朗的上午,小麗拿著一塊矩形木板在陽光下做投影實驗,矩形木板在地面上形成的投影不可能是()A. B.C. D.12.如圖,的半徑弦于點,連結并延長交于點,連結.若,,則的長為()A.5 B. C. D.二、填空題(每題4分,共24分)13.二次函數(shù),當時,y隨x的增大而減小,則m的取值范圍是__________.14.如圖,在△ABC中,∠BAC=90°,AB=AC=,點D、E分別在BC、AC上(點D不與點B、C重合),且∠ADE=45°,若△ADE是等腰三角形,則CE=_____.15.若方程有兩個不相等的實數(shù)根,則的取值范圍是__________.16.一只跳蚤在第一象限及x軸、y軸上跳動,在第一秒鐘,它從原點跳動到(0,1),然后接著按圖中箭頭所示方向跳動[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳動一個單位,那么第35秒時跳蚤所在位置的坐標是__________17.如圖,AB是⊙O的直徑,C、D為⊙O上的點,P為圓外一點,PC、PD均與圓相切,設∠A+∠B=130°,∠CPD=β,則β=_____.18.如圖,在四邊形ABCD中,,E、F、G分別是AB、CD、AC的中點,若,,則等于______________.三、解答題(共78分)19.(8分)在如圖的小正方形網(wǎng)格中,每個小正方形的邊長均為,格點(頂點是網(wǎng)格線的交點)的三個頂點坐標分別是,以為位似中心在網(wǎng)格內(nèi)畫出的位似圖△A1B1C1,使與的相似比為,并計算出的面積.20.(8分)有兩個不透明的袋子,甲袋子里裝有標有兩個數(shù)字的張卡片,乙袋子里裝有標有三個數(shù)字的張卡片,兩個袋子里的卡片除標有的數(shù)字不同外,其大小質地完全相同.(1)從乙袋里任意抽出一張卡片,抽到標有數(shù)字的概率為.(2)求從甲、乙兩個袋子里各抽一張卡片,抽到標有兩個數(shù)字的卡片的概率.21.(8分)利用一面墻(墻的長度為20m),另三邊用長58m的籬笆圍成一個面積為200m2的矩形場地.求矩形場地的各邊長?22.(10分)如圖,雙曲線經(jīng)過點P(2,1),且與直線y=kx﹣4(k<0)有兩個不同的交點.(1)求m的值.(2)求k的取值范圍.23.(10分)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y=2x+b交x軸于點D,且⊙P的半徑為,AB=4.(1)求點B,P,C的坐標;(2)求證:CD是⊙P的切線.24.(10分)解一元二次方程:x2﹣2x﹣3=1.25.(12分)已知是⊙的直徑,⊙過的中點,且于(1)求證:是⊙的切線(2)若,求的長26.如圖1,在矩形中,,,是邊上一點,連接,將矩形沿折疊,頂點恰好落在邊上點處,延長交的延長線于點.(1)求線段的長;(2)如圖2,,分別是線段,上的動點(與端點不重合),且.①求證:∽;②是否存在這樣的點,使是等腰三角形?若存在,請求出的長;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、A【分析】圓的半徑為12,求出AB的長度,用弧長公式可求得的長度,圓錐的底面圓的半徑=圓錐的弧長÷2π.【詳解】AB=cm,∴∴圓錐的底面圓的半徑=÷(2π)=3cm.故選A.【點睛】本題綜合考查有關扇形和圓錐的相關計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:(1)圓錐的母線長等于側面展開圖的扇形半徑;(2)圓錐的底面周長等于側面展開圖的扇形弧長.正確對這兩個關系的記憶是解題的關鍵.2、B【分析】根據(jù)相反數(shù)的性質可得結果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質是解題的關鍵.3、A【分析】連接OP,根據(jù)條件可判斷出PO⊥AB,即AP是定值,與x的大小無關,所以是平行于x軸的線段.要注意CE的長度是小于1而大于0的.【詳解】連接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y(tǒng)=(0<x<1).故選A.【點睛】解決有關動點問題的函數(shù)圖象類習題時,關鍵是要根據(jù)條件找到所給的兩個變量之間的函數(shù)關系,尤其是在幾何問題中,更要注意基本性質的掌握和靈活運用.4、D【詳解】∵2x=3y,∴.故選D.5、C【分析】根據(jù)頂點在線段上移動,又知點、的坐標分別為、,再根據(jù)平行于軸,之間距離不變,點的橫坐標的最大值為,分別求出對稱軸過點和時的情況,即可判斷出點橫坐標的最小值.【詳解】根據(jù)題意知,點的橫坐標的最大值為,此時對稱軸過點,點的橫坐標最大,此時的點坐標為,當對稱軸過點時,點的橫坐標最小,此時的點坐標為,點的坐標為,故點的橫坐標的最小值為,故選:C.【點睛】本題考查了拋物線與軸的交點,二次函數(shù)的圖象與性質.解答本題的關鍵是理解二次函數(shù)在平行于軸的直線上移動時,兩交點之間的距離不變.6、A【解析】方程利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.【詳解】解:方程x(x-1)=0,
可得x=0或x-1=0,
解得:x=0或x=1.
故選:A.【點睛】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.7、A【解析】試題分析:∵反比例函數(shù)中,k=-4<0,∴此函數(shù)的圖象在二、四象限,在每一象限內(nèi)y隨x的增大而增大.∵x1<x2<0<x3,∴0<y1<y2,y3<0,∴y3<y1<y2故選A.考點:反比例函數(shù)圖象上點的坐標特征.8、B【詳解】解:連接A′B,由月牙①順時針旋轉90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐標為(2,4).故選B.9、B【分析】利用和可知,然后分別在和中利用求出BD和CD的長度,最后利用BC=BD+CD即可得出答案.【詳解】∵∴∵∴在中∵,∴在中∵,∴∴故選B【點睛】本題主要考查解直角三角形,掌握銳角三角函數(shù)的意義是解題的關鍵.10、B【解析】根據(jù)“左加右減,上加下減”的原則進行解答即可:∵y=x2,∴平移過程為:先向左平移2個單位,再向下平移3個單位.故選B.11、A【解析】解:將矩形木框立起與地面垂直放置時,形成B選項的影子;將矩形木框與地面平行放置時,形成C選項影子;將木框傾斜放置形成D選項影子;根據(jù)同一時刻物高與影長成比例,又因矩形對邊相等,因此投影不可能是A選項中的梯形,因為梯形兩底不相等.故選A.12、C【分析】連接BE,設⊙O的半徑為r,然后由垂徑定理和勾股定理列方程求出半徑r,最后由勾股定理依次求BE和EC的長即可.【詳解】解:如圖:連接BE設⊙O的半徑為r,則OA=OD=r,OC=r-2∵OD⊥AB,∴∠ACO=90°∴AC=BC=AB=4,在Rt△ACO中,由勾股定理得:r2-42=(r-2)2,解得:r=5∴AE=2r=10,∵AE為⊙O的直徑∴∠ABE=90°由勾股定理得:BE==6在Rt△ECB中,EC=.故答案為C.【點睛】本題主要考查了垂徑定理和勾股定理,根據(jù)題意正確作出輔助線、構造出直角三角形并利用勾股定理求解是解答本題的關鍵.二、填空題(每題4分,共24分)13、【分析】先根據(jù)二次函數(shù)的解析式判斷出函數(shù)的開口方向,再由當時,函數(shù)值y隨x的增大而減小可知二次函數(shù)的對稱軸,故可得出關于m的不等式,求出m的取值范圍即可.【詳解】解:∵二次函數(shù),a=?1<0,∴拋物線開口向下,∵當時,函數(shù)值y隨x的增大而減小,∴二次函數(shù)的對稱軸,即,解得,故答案為:.【點睛】本題考查的是二次函數(shù)的性質,熟知二次函數(shù)的增減性是解答此題的關鍵.14、2﹣或.【分析】當△ABD∽△DCE時,可能是DA=DE,也可能是ED=EA,所以要分兩種情況求出CE長.【詳解】解:∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC+∠B+∠BAD=180,∠DEC+∠C+∠CDE=180°,∴∠ADC+∠B+∠BAD=∠DEC+∠C+∠CDE,∴∠EDC=∠BAD,∴△ABD∽△DCE∵∠DAE<∠BAC=90°,∠ADE=45°,∴當△ADE是等腰三角形時,第一種可能是AD=DE.∴△ABD≌△DCE.∴CD=AB=.∴BD=2﹣=CE,當△ADE是等腰三角形時,第二種可能是ED=EA.∵∠ADE=45°,∴此時有∠DEA=90°.即△ADE為等腰直角三角形.∴AE=DE=AC=.∴CE=AC=當AD=EA時,點D與點B重合,不合題意,所以舍去,因此CE的長為2﹣或.故答案為:2﹣或.【點睛】此題主要考查相似三角形的應用,解題的關鍵是熟知全等三角形的性質及等腰直角三角形的性質.15、【分析】由題意關于x的方程有兩個不相等的實數(shù)根,即判別式△=b2-4ac>2.即可得到關于a的不等式,從而求得a的范圍.【詳解】解:∵b2-4ac=22-4×2×a=4-4a>2,解得:a<2.∴a的取值范圍是a<2.故答案為:a<2.【點睛】本題考查一元二次方程根的情況與判別式△的關系:△>2?方程有兩個不相等的實數(shù)根;△=2?方程有兩個相等的實數(shù)根;△<2?方程沒有實數(shù)根.16、(5,0)【詳解】解:跳蚤運動的速度是每秒運動一個單位長度,(0,0)→(0,1)→(1,1)→(1,0)用的秒數(shù)分別是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此類推,到(5,0)用35秒.故第35秒時跳蚤所在位置的坐標是(5,0).17、100°【分析】連結OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據(jù)OB=OC,OD=OA,可得∠BOC=180°?2∠B,∠AOD=180°?2∠A,則可得出與β的關系式.進而可求出β的度數(shù).【詳解】連結OC,OD,∵PC、PD均與圓相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案為:100°.【點睛】本題利用了切線的性質,圓周角定理,四邊形的內(nèi)角和為360度求解,解題的關鍵是熟練掌握切線的性質.18、36°【分析】根據(jù)三角形中位線定理得到FG∥AD,F(xiàn)G=AD,GE∥BC,GE=BC,根據(jù)等腰三角形的性質、三角形內(nèi)角和定理計算即可.【詳解】解:∵F、G分別是CD、AC的中點,∴FG∥AD,F(xiàn)G=AD,∴∠FGC=∠DAC=15°,∵E、G分別是AB、AC的中點,∴GE∥BC,GE=BC,∴∠EGC=180°-∠ACB=93°,∴∠EGF=108°,∵AD=BC,∴GF=GE,∴∠FEG=×(180°-108°)=36°;故答案為:36°.【點睛】本題考查的是三角形中位線定理、等腰三角形的性質,三角形的中位線平行于第三邊,且等于第三邊的一半.三、解答題(共78分)19、畫圖見解析,的面積為1.【分析】先找出各頂點的對應頂點A1、B1、C1,然后用線段順次連接即可得到,用割補法可以求出的面積.【詳解】如圖所示:,即為所求,的面積為:.【點睛】本題考查了作圖-位似變換:①確定位似中心;②分別連接并延長位似中心和能代表原圖的關鍵點;③根據(jù)位似比,確定能代表所作的位似圖形的關鍵點;④順次連接上述各點,得到放大或縮小的圖形.20、(1);(2)抽到標有兩個數(shù)字的卡片的概率是.【分析】(1)直接根據(jù)概率公式求解即可;(2)根據(jù)題意畫出樹狀圖得出所有等情況數(shù)和抽到標有3、6兩個數(shù)字的卡片的情況數(shù),然后根據(jù)概率公式即可得出答案.【詳解】(1)乙袋子里裝有標有三個數(shù)字的卡片共3張,則抽到標有數(shù)字的概率為;故答案為:;(2)根據(jù)題意畫圖如下:共有種等情況數(shù),其中抽到標有兩個數(shù)字有種,則抽到標有兩個數(shù)字的卡片的概率是.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、矩形長為25m,寬為8m【分析】設垂直于墻的一邊為x米,則鄰邊長為(58-2x),利用矩形的面積公式列出方程并解答.【詳解】解:設垂直于墻的一邊為x米,得:x(58﹣2x)=200解得:x1=25,x2=4,當x=4時,58﹣8=50,∵墻的長度為20m,∴x=4不符合題意,當x=25時,58﹣2x=8,∴矩形的長為25m,寬為8m,答:矩形長為25m,寬為8m.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.22、(1)m=2;(2)k的取值范圍是﹣2<k<0.【解析】(1)將點P坐標代入,利用待定系數(shù)法求解即可;(2)由題意可得關于x的一元二次方程,根據(jù)有兩個不同的交點,可得△=(﹣4)2﹣4k?(﹣2)>0,求解即可.【詳解】(1)∵雙曲線經(jīng)過點P(2,1),∴m=2×1=2;(2)∵雙曲線與直線y=kx﹣4(k<0)有兩個不同的交點,∴,整理得:kx2﹣4x﹣2=0,∴△=(﹣4)2﹣4k?(﹣2)>0,∴k>﹣2,∴k的取值范圍是﹣2<k<0.【點睛】本題考查了反比例函數(shù)與一次函數(shù)綜合,涉及了待定系數(shù)法、一元二次方程根的判別式等,熟練掌握相關知識是解題的關鍵.23、(1)C(-2,2);(2)證明見解析.【解析】試題分析:(1)Rt△OBP中,由勾股定理得到OP的長,連接AC,因為BC是直徑,所以∠BAC=90°,因為OP是△ABC的中位線,所以OA=2,AC=2,即可求解;(2)由點C的坐標可得直線CD的解析式,則可求點D的坐標,從而可用SAS證△DAC≌△POB,進而證∠ACB=90°.試題解析:(1)解:如圖,連接CA.∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,∴OP2=5-4=1,OP=1.∵BC是⊙P的直徑,∴∠CAB=90°.∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).(2)證明:∵直線y=2x+b過C點,∴b=6.∴y=2x+6.∵當y=0時,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切線.24、x1=﹣1,x2=2.【分析】先把方程左邊分解,原方程轉化為x+1=1或x﹣2=1,然后解一次方程即可.【詳解】解:∵x2﹣2x﹣2=1,∴(x+1)(x﹣2)=1,∴x+1=1或x﹣2=1,∴x1=﹣1,x2=2.【點睛】本題考查了一元二次方程的解法:配方法、公式法和因式分解法.三種方法均可解出方程的根,這里選用的是因式分解法.25、(1)詳見解析;(2)【分析】(1)連結OD,如圖,欲證明DE是⊙O的切線,只需推知OD⊥DE即可;
(2)利用等面積法進行解答.【詳解】(1)證明:連接,如圖∵∴為的中位線,∵∴∴是⊙的切線.(2)連接,如圖則∵AB是直徑∴∴根據(jù)勾股定理得:AD=12在Rt△DAC中,AD?DC=AC?DE∴【點睛】本題考查的是切線的判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防工程維保及消防安全教育培訓合同2篇
- 二零二五版美發(fā)沙龍與發(fā)型師勞動合同范本(含職業(yè)規(guī)劃)3篇
- 2025年度特種車輛租賃及操作培訓服務合同3篇
- 二零二四南通國際會展中心場地租賃及配套設施合同3篇
- 二零二五版電商數(shù)據(jù)分析與優(yōu)化代運營合同3篇
- 年度客運用車市場分析及競爭策略分析報告
- 2024-2025學年高中歷史第二單元中國古代文藝長廊第7課漢字與書法課時作業(yè)含解析岳麓版必修3
- 2024-2025學年高中歷史第6單元辛亥革命與中華民國的建立第20課北洋軍閥統(tǒng)治時期的政治經(jīng)濟與文化經(jīng)典題集錦含解析新人教版必修中外歷史綱要上
- 2024音樂人授權影視作品使用其音樂合同
- 二零二四年度4S店租賃期內(nèi)合同解除與違約金協(xié)議
- (主城一診)重慶市2025年高2025屆高三學業(yè)質量調研抽測 (第一次)地理試卷(含答案)
- (2024)湖北省公務員考試《行測》真題及答案解析
- 口算天天練一年級下
- GB/T 12706.1-2020額定電壓1 kV(Um=1.2 kV)到35 kV(Um=40.5 kV)擠包絕緣電力電纜及附件第1部分:額定電壓1 kV(Um=1.2 kV)和3 kV(Um=3.6 kV)電纜
- 自動控制原理全套課件
- 上海科技大學,面試
- 《五年級奧數(shù)總復習》精編課件
- TS2011-16 帶式輸送機封閉棧橋圖集
- 礦區(qū)道路工程施工組織設計方案
- 多聯(lián)機的施工方案與技術措施
- 新型肥料配方設計與加工PPT課件
評論
0/150
提交評論