內(nèi)蒙古翁牛特旗達標名校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第1頁
內(nèi)蒙古翁牛特旗達標名校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第2頁
內(nèi)蒙古翁牛特旗達標名校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第3頁
內(nèi)蒙古翁牛特旗達標名校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第4頁
內(nèi)蒙古翁牛特旗達標名校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

內(nèi)蒙古翁牛特旗達標名校2023-2024學年中考數(shù)學最后沖刺模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.互聯(lián)網(wǎng)“微商”經(jīng)營已成為大眾創(chuàng)業(yè)新途徑,某微信平臺上一件商品標價為200元,按標價的五折銷售,仍可獲利20元,則這件商品的進價為()A.120元 B.100元 C.80元 D.60元2.某體育用品商店一天中賣出某種品牌的運動鞋15雙,其中各種尺碼的鞋的銷售量如表所示:鞋的尺碼/cm2323.52424.525銷售量/雙13362則這15雙鞋的尺碼組成的一組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別為()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,243.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.4.有理數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)>﹣4 B.bd>0 C.|a|>|b| D.b+c>05.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現(xiàn)售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.456.如圖,在平面直角坐標系中Rt△ABC的斜邊BC在x軸上,點B坐標為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°,然后再向下平移2個單位,則A點的對應點A′的坐標為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)7.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π8.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元9.利用“分形”與“迭代”可以制作出很多精美的圖形,以下是制作出的幾個簡單圖形,其中是軸對稱但不是中心對稱的圖形是()A. B. C. D.10.如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣11.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為()A.45° B.50° C.55° D.60°12.如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為()A.B.C.D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.寫出一個一次函數(shù),使它的圖象經(jīng)過第一、三、四象限:______.14.方程的解為.15.如圖,扇形的半徑為,圓心角為120°,用這個扇形圍成一個圓錐的側(cè)面,所得的圓錐的高為______.16.計算:﹣1﹣2=_____.17.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減??;⑥a+b+c>0中,正確的有______.(只填序號)18.甲乙兩人8次射擊的成績?nèi)鐖D所示(單位:環(huán))根據(jù)圖中的信息判斷,這8次射擊中成績比較穩(wěn)定的是______(填“甲”或“乙”)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.20.(6分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關(guān)于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.21.(6分)如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.22.(8分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.23.(8分)為提高城市清雪能力,某區(qū)增加了機械清雪設備,現(xiàn)在平均每天比原來多清雪300立方米,現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同,求現(xiàn)在平均每天清雪量.24.(10分)甲、乙兩名隊員的10次射擊訓練,成績分別被制成下列兩個統(tǒng)計圖.并整理分析數(shù)據(jù)如下表:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲771.2乙78(1)求,,的值;分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?25.(10分)某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學生比較多.為了解學生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調(diào)查,過程如下,請補充完整.收集數(shù)據(jù):從選擇籃球和排球的學生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數(shù)據(jù):按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格)分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:項目平均數(shù)中位數(shù)眾數(shù)排球8.759.510籃球8.819.259.5得出結(jié)論:(1)如果全校有160人選擇籃球項目,達到優(yōu)秀的人數(shù)約為_________人;(2)初二年級的小明和小軍看到上面數(shù)據(jù)后,小明說:排球項目整體水平較高.小軍說:籃球項目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個不同的角度說明推斷的合理性)26.(12分)已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;(2)若tanE=,⊙O的半徑為3,求OA的長.27.(12分)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點M的坐標;(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

解:設該商品的進價為x元/件,依題意得:(x+20)÷=200,解得:x=1.∴該商品的進價為1元/件.故選C.2、A【解析】【分析】根據(jù)眾數(shù)和中位數(shù)的定義進行求解即可得.【詳解】這組數(shù)據(jù)中,24.5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,所以眾數(shù)為24.5,這組數(shù)據(jù)一共有15個數(shù),按從小到大排序后第8個數(shù)是24.5,所以中位數(shù)為24.5,故選A.【點睛】本題考查了眾數(shù)、中位數(shù),熟練掌握中位數(shù)、眾數(shù)的定義以及求解方法是解題的關(guān)鍵.3、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.4、C【解析】

根據(jù)數(shù)軸上點的位置關(guān)系,可得a,b,c,d的大小,根據(jù)有理數(shù)的運算,絕對值的性質(zhì),可得答案.【詳解】解:由數(shù)軸上點的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合題意;B、bd<0,故B不符合題意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合題意;D、b+c<0,故D不符合題意;故選:C.【點睛】本題考查了有理數(shù)大小的比較、有理數(shù)的運算,絕對值的性質(zhì),熟練掌握相關(guān)的知識是解題的關(guān)鍵5、C【解析】

根據(jù)題意列出代數(shù)式,化簡即可得到結(jié)果.【詳解】根據(jù)題意得:a÷(1?20%)=a÷45=5故答案選:C.【點睛】本題考查的知識點是列代數(shù)式,解題的關(guān)鍵是熟練的掌握列代數(shù)式.6、D【解析】解:作AD⊥BC,并作出把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點B坐標為(1,0),∴A點的坐標為(4,).∵BD=1,∴BD1=1,∴D1坐標為(﹣2,0),∴A1坐標為(﹣2,﹣).∵再向下平移2個單位,∴A′的坐標為(﹣2,﹣﹣2).故選D.點睛:本題主要考查了直角三角形的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì),作出圖形利用旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì)是解答此題的關(guān)鍵.7、C【解析】

由切線的性質(zhì)定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計算,解題的關(guān)鍵是先求出角度再用弧長公式進行計算.8、A【解析】

設這種商品每件進價為x元,根據(jù)題中的等量關(guān)系列方程求解.【詳解】設這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關(guān)鍵是確定未知數(shù),根據(jù)題中的等量關(guān)系列出正確的方程.9、A【解析】

根據(jù):如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.逐個按要求分析即可.【詳解】選項A,是軸對稱圖形,不是中心對稱圖形,故可以選;選項B,是軸對稱圖形,也是中心對稱圖形,故不可以選;選項C,不是軸對稱圖形,是中心對稱圖形,故不可以選;選項D,是軸對稱圖形,也是中心對稱圖形,故不可以選.故選A【點睛】本題考核知識點:軸對稱圖形和中心對稱圖形.解題關(guān)鍵點:理解軸對稱圖形和中心對稱圖形定義.

錯因分析容易題.失分的原因是:沒有掌握軸對稱圖形和中心對稱圖形的定義.

10、D【解析】

連接OC交MN于點P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質(zhì)的運用、勾股定理的運用、三角函數(shù)值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質(zhì)求解是關(guān)鍵.11、B【解析】

先根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),再由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì),圓周角定理.圓內(nèi)接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.12、B【解析】【分析】設菱形的高為h,即是一個定值,再分點P在AB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應的函數(shù)關(guān)系式,然后選擇答案即可.【詳解】分三種情況:①當P在AB邊上時,如圖1,設菱形的高為h,y=12∵AP隨x的增大而增大,h不變,∴y隨x的增大而增大,故選項C不正確;②當P在邊BC上時,如圖2,y=12AD和h都不變,∴在這個過程中,y不變,故選項A不正確;③當P在邊CD上時,如圖3,y=12∵PD隨x的增大而減小,h不變,∴y隨x的增大而減小,∵P點從點A出發(fā)沿A→B→C→D路徑勻速運動到點D,∴P在三條線段上運動的時間相同,故選項D不正確,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,菱形的性質(zhì),根據(jù)點P的位置的不同,運用分類討論思想,分三段求出△PAD的面積的表達式是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y=x﹣1(答案不唯一)【解析】一次函數(shù)圖象經(jīng)過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).14、.【解析】試題分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經(jīng)檢驗,是原方程的根.15、4cm【解析】

求出扇形的弧長,除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【詳解】扇形的弧長==4π,

圓錐的底面半徑為4π÷2π=2,

故圓錐的高為:=4,

故答案為4cm.【點睛】本題考查了圓錐的計算,重點考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.16、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案為-3.17、①②③⑤【解析】

根據(jù)圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當時,y隨x的增大而減?。盛佗冖菡_,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標小于﹣2,則④錯誤,當x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.18、甲【解析】由圖表明乙這8次成績偏離平均數(shù)大,即波動大,而甲這8次成績,分布比較集中,各數(shù)據(jù)偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩(wěn)定的是甲.故答案為甲.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)BD=CD=5;(2)BD=5,BC=5.【解析】

(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質(zhì)以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據(jù)垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【點睛】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線,屬于中考??碱}型.20、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【解析】

(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應用21、(1)作圖見解析;(2)作圖見解析;(3)P(,0).【解析】

(1)分別將點A、B、C向上平移1個單位,再向右平移5個單位,然后順次連接;(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C以點O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后的對應點,然后順次連接即可;(3)利用最短路徑問題解決,首先作A1點關(guān)于x軸的對稱點A3,再連接A2A3與x軸的交點即為所求.【詳解】解:(1)如圖所示,△A1B1C1為所求做的三角形;(2)如圖所示,△A2B2O為所求做的三角形;(3)∵A2坐標為(3,1),A3坐標為(4,﹣4),∴A2A3所在直線的解析式為:y=﹣5x+16,令y=0,則x=,∴P點的坐標(,0).考點:平移變換;旋轉(zhuǎn)變換;軸對稱-最短路線問題.22、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標,然后求出A、B、C的坐標,然后根據(jù)即可得出結(jié)論;(2)設點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關(guān)于t的方程即可得出結(jié)論;(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據(jù)題意得:解得:【點睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.23、現(xiàn)在平均每天清雪量為1立方米.【解析】分析:設現(xiàn)在平均每天清雪量為x立方米,根據(jù)等量關(guān)系“現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同”列分式方程求解.詳解:設現(xiàn)在平均每天清雪量為x立方米,由題意,得解得x=1.經(jīng)檢驗x=1是原方程的解,并符合題意.答:現(xiàn)在平均每天清雪量為1立方米.點睛:此題主要考查了分式方程的應用,關(guān)鍵是確定問題的等量關(guān)系,注意解分式方程的時候要進行檢驗.24、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】

(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析.【詳解】(1)甲的平均成績a==7(環(huán)),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(shù)b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統(tǒng)計圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運用.熟練掌握平均數(shù)的計算,理解方差的概念,能夠根據(jù)計算的數(shù)據(jù)進行綜合分析.25、130小明平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【解析】

根據(jù)抽取的16人中成績達到優(yōu)秀的百分比,即可得到全校達到優(yōu)秀的人數(shù);根據(jù)平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高,即可得到結(jié)論.【詳解】解:補全表格成績:人數(shù)項目10排球11275籃球021103達到優(yōu)秀的人數(shù)約為(人);故答案為130;同意小明的看法,理由為:平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高答案不唯一,理由需支持判斷結(jié)論故答案為小明,平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【點睛】本題考查眾數(shù)、中位數(shù),平均數(shù)的應用,解題的關(guān)鍵是掌握眾數(shù)、中位數(shù)、平均數(shù)的定義以及用樣本估計總體.26、(1)AB與⊙O的位置關(guān)系是相切,證明見解析;(2)OA=1.【解析】

(1)先判斷AB與⊙O的位置關(guān)系,然后根據(jù)等腰三角形的性質(zhì)即可解答本題;(2)根據(jù)題三角形的相似可以求得BD的長,從而可以得到OA的長.【詳解】解:(1)AB與⊙O的位置關(guān)系是相切,證明:如圖,連接OC.∵OA=OB,C為AB的中點,∴OC⊥AB.∴AB是⊙O的切線;(2)∵ED是直徑,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴.∴BC2=BD?BE.∵,∴.∴.設BD=x,則BC=2x.又BC2=BD?BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【點睛】本題考查直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論