2025屆江蘇省鎮(zhèn)江丹陽市數(shù)學(xué)九上期末經(jīng)典試題含解析_第1頁
2025屆江蘇省鎮(zhèn)江丹陽市數(shù)學(xué)九上期末經(jīng)典試題含解析_第2頁
2025屆江蘇省鎮(zhèn)江丹陽市數(shù)學(xué)九上期末經(jīng)典試題含解析_第3頁
2025屆江蘇省鎮(zhèn)江丹陽市數(shù)學(xué)九上期末經(jīng)典試題含解析_第4頁
2025屆江蘇省鎮(zhèn)江丹陽市數(shù)學(xué)九上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆江蘇省鎮(zhèn)江丹陽市數(shù)學(xué)九上期末經(jīng)典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,正方形的面積為16,是等邊三角形,點在正方形內(nèi),在對角線上有一點,使的和最小,則這個最小值為()A.2 B.4 C.6 D.82.已知圓心角為120°的扇形的弧長為6π,該扇形的面積為()A. B. C. D.3.如圖,矩形ABCD中,E是AB的中點,將△BCE沿CE翻折,點B落在點F處,tan∠BCE=.設(shè)AB=x,△ABF的面積為y,則y與x的函數(shù)圖象大致為A. B.C. D.4.已知△ABC的外接圓⊙O,那么點O是△ABC的()A.三條中線交點 B.三條高的交點C.三條邊的垂直平分線的交點 D.三條角平分線交點5.當(dāng)x=1時,代數(shù)式2ax2+bx的值為5,當(dāng)x=2時,代數(shù)式ax2+bx﹣3的值為()A.﹣ B.2 C.7 D.176.如圖,矩形中,,,點為矩形內(nèi)一動點,且滿足,則線段的最小值為()A.5 B.1 C.2 D.37.在Rt△ABC中,∠C=900,AC=4,AB=5,則sinB的值是()A. B. C. D.8.定義:如果一個一元二次方程的兩個實數(shù)根的比值與另一個一元二次方程的兩個實數(shù)根的比值相等,我們稱這兩個方程為“相似方程”,例如,的實數(shù)根是3或6,的實數(shù)根是1或2,,則一元二次方程與為相似方程.下列各組方程不是相似方程的是()A.與 B.與C.與 D.與9.一個小正方體沿著斜面前進了10米,橫截面如圖所示,已知,此時小正方體上的點距離地面的高度升高了()A.5米 B.米 C.米 D.米10.二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;;,其中正確結(jié)論的是A. B. C. D.二、填空題(每小題3分,共24分)11.點P(4,﹣6)關(guān)于原點對稱的點的坐標是_____.12.對于實數(shù),定義運算“◎”如下:◎.若◎,則_____.13.“國慶節(jié)”和“中秋節(jié)”雙節(jié)期間,某微信群規(guī)定,群內(nèi)的每個人都要發(fā)一個紅包,并保證群內(nèi)其他人都能搶到且自己不能搶自己發(fā)的紅包,若此次搶紅包活動,群內(nèi)所有人共收到156個紅包,則該群一共有_____人.14.在一個不透明的盒子中裝有紅、白兩種除顏色外完全相同的球,其中有a個白球和4個紅球,若每次將球充分攪勻后,任意摸出1個球記下顏色再放回盒子.通過大量重復(fù)試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在20%左右,則a的值約為_____.15.若點(p,2)與(﹣3,q)關(guān)于原點對稱,則p+q=__.16.計算:=_____.17.觀察下列圖中所示的一系列圖形,它們是按一定規(guī)律排列的,依照此規(guī)律,第2019個圖形中共有_____個〇.18.五角星是我們生活中常見的一種圖形,如圖五角星中,點C,D分別為線段AB的右側(cè)和左側(cè)的黃金分割點,已知黃金比為,且AB=2,則圖中五邊形CDEFG的周長為________.三、解答題(共66分)19.(10分)如圖,在矩形ABCD中,AB=6,BC=13,BE=4,點F從點B出發(fā),在折線段BA﹣AD上運動,連接EF,當(dāng)EF⊥BC時停止運動,過點E作EG⊥EF,交矩形的邊于點G,連接FG.設(shè)點F運動的路程為x,△EFG的面積為S.(1)當(dāng)點F與點A重合時,點G恰好到達點D,此時x=,當(dāng)EF⊥BC時,x=;(2)求S關(guān)于x的函數(shù)解析式,并直接寫出自變量x的取值范圍;(3)當(dāng)S=15時,求此時x的值.20.(6分)某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了四次測試,測試成績?nèi)绫恚▎挝唬涵h(huán)):第一次第二次第三次第四次甲9887乙10679(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙兩名運動員的平均成績;(2)分別計算甲、乙兩人四次測試成績的方差;根據(jù)計算的結(jié)果,你認為推薦誰參加省比賽更合適?請說明理由.21.(6分)圖①,圖②都是8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點.線段OM,ON的端點均在格點上.在圖①,圖②給定的網(wǎng)格中以O(shè)M,ON為鄰邊各畫一個四邊形,使第四個頂點在格點上.要求:(1)圖①中所畫的四邊形是中心對稱圖形;(2)圖②中所畫的四邊形是軸對稱圖形;(3)所畫的兩個四邊形不全等.22.(8分)如圖,中,,,,解這個直角三角形.23.(8分)如圖,在平面直角坐標系xOy中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=且經(jīng)過A,C兩點,與x軸的另一交點為點B.(1)求拋物線解析式.(2)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.24.(8分)如圖,已知拋物線.(1)用配方法將化成的形式,并寫出其頂點坐標;(2)直接寫出該拋物線與軸的交點坐標.25.(10分)畫出拋物線y=﹣(x﹣1)2+5的圖象(要求列表,描點),回答下列問題:(1)寫出它的開口方向,對稱軸和頂點坐標;(2)當(dāng)y隨x的增大而增大時,寫出x的取值范圍;(3)若拋物線與x軸的左交點(x1,0)滿足n≤x1≤n+1,(n為整數(shù)),試寫出n的值.26.(10分)如圖,一個運動員推鉛球,鉛球在點A處出手,出手時球離地面m.鉛球落地點在點B處,鉛球運行中在運動員前4m處(即OC=4m)達到最高點,最高點D離地面3m.已知鉛球經(jīng)過的路線是拋物線,根據(jù)圖示的平面直角坐標系,請你算出該運動員的成績.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】由于點B與點D關(guān)于AC對稱,所以連接BE,與AC的交點即為F,此時,F(xiàn)D+FE=BE最小,而BE是等邊三角形ABE的邊,BE=AB,由正方形面積可得AB的長,從而得出結(jié)果.【詳解】解:由題意可知當(dāng)點P位于BE與AC的交點時,有最小值.設(shè)BE與AC的交點為F,連接BD,∵點B與點D關(guān)于AC對稱∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面積為16∴AB=1∵△ABE是等邊三角形∴BE=AB=1.故選:B.【點睛】本題考查的知識點是軸對稱中的最短路線問題,解題的關(guān)鍵是弄清題意,找出相對應(yīng)的相等線段.2、B【分析】設(shè)扇形的半徑為r.利用弧長公式構(gòu)建方程求出r,再利用扇形的面積公式計算即可.【詳解】解:設(shè)扇形的半徑為r.由題意:=6π,∴r=9,∴S扇形==27π,故選B.【點睛】本題考查扇形的弧長公式,面積公式等知識,解題的關(guān)鍵是學(xué)會構(gòu)建方程解決問題,屬于中考常考題型.3、D【解析】設(shè)AB=x,根據(jù)折疊,可證明∠AFB=90°,由tan∠BCE=,分別表示EB、BC、CE,進而證明△AFB∽△EBC,根據(jù)相似三角形面積之比等于相似比平方,表示△ABF的面積.【詳解】設(shè)AB=x,則AE=EB=x,由折疊,F(xiàn)E=EB=x,則∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B關(guān)于EC對稱,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故選D.【點睛】本題考查了三角函數(shù),相似三角形,三角形面積計算,二次函數(shù)圖像等知識,利用相似三角形的性質(zhì)得出△ABF和△EBC的面積比是解題關(guān)鍵.4、C【分析】根據(jù)三角形外接圓圓心的確定方法,結(jié)合垂直平分線的性質(zhì),即可求得.【詳解】已知⊙O是△ABC的外接圓,那么點O一定是△ABC的三邊的垂直平分線的交點,故選:C.【點睛】本題考查三角形外接圓圓心的確定,屬基礎(chǔ)題.5、C【解析】直接把x=1代入進而得出2a+b=5,再把x=2代入ax2+bx﹣3,即可求出答案.【詳解】∵當(dāng)x=1時,代數(shù)式2ax2+bx的值為5,∴2a+b=5,∴當(dāng)x=2時,代數(shù)式ax2+bx﹣3=4a+2b﹣3=2(2a+b)﹣3=2×5﹣3=1.故選:C.【點睛】本題主要考查求代數(shù)式的值,整體思想方法的應(yīng)用,是解題的關(guān)鍵.6、B【分析】通過矩形的性質(zhì)和等角的條件可得∠BPC=90°,所以P點應(yīng)該在以BC為直徑的圓上,即OP=4,根據(jù)兩邊之差小于第三邊及三點共線問題解決.【詳解】如圖,∵四邊形ABCD為矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴點P在以BC為直徑的圓⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴當(dāng)P,D,O三點共線時,PD最小,∴PD的最小值為OD-OP=5-4=1.故選:B.【點睛】本題考查矩形的性質(zhì),勾股定理,線段最小值問題及圓的性質(zhì),分析出P點的運動軌跡是解答此題的關(guān)鍵.7、D【解析】試題分析:正弦的定義:正弦由題意得,故選D.考點:銳角三角函數(shù)的定義點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握正弦的定義,即可完成.8、C【分析】根據(jù)“相似方程”的定義逐項分析即可.【詳解】A.∵,∴.∴x1=4,x2=-4,∵,∴x1=5,x2=-5.∵4:(-4)=5:(5),∴與是相似方程,故不符合題意;B.∵,∴x1=x2=6.∵,∴(x+2)2=0,∴x1=x2=-2.∵6:6=(-2):(-2),∴與是相似方程,故不符合題意;C.∵,∴,∴x1=0,x2=7.∵,∴,∴(x-2)(x+3)=0,∴x1=2,x2=-3.∵0:7≠2:(-3),∴與不是相似方程,符合題意;D.∵,∴x1=-2,x2=-8.∵,∴(x-1)(x-4)=0,∴x1=1,x2=4.∵(-2):(-8)=1:4,∴與是相似方程,故不符合題意;故選C.【點睛】本題考查了新定義運算,以及一元二次方程的解法,正確理解“相似方程”的定義是解答本題的關(guān)鍵.9、B【分析】根據(jù)題意,用未知數(shù)設(shè)出斜面的鉛直高度和水平寬度,再運用勾股定理列方程求解.【詳解】解:Rt△ABC中,AB=2BC,

設(shè)BC=x,則AC=2x,

根據(jù)勾股定理可得,

x2+(2x)2=102,

解得x=或x=(負值舍去),即小正方體上的點N距離地面AB的高度升高了米,

故選:B.【點睛】此題主要考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是熟練運用勾股定理的知識,此題比較簡單.10、C【分析】利用圖象信息以及二次函數(shù)的性質(zhì)一一判斷即可;【詳解】解:∵拋物線開口向下,∴a<0,∵對稱軸x=﹣1=,∴b<0,∵拋物線交y軸于正半軸,∴c>0,∴abc>0,故①正確,∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故②錯誤,∵x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正確,∵x=﹣1時,y>0,x=1時,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④錯誤,∵x=﹣1時,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正確.故選C.【點睛】本題考查二次函數(shù)的圖象與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是讀懂圖象信息,靈活運用所學(xué)知識解決問題,屬于中考??碱}型.二、填空題(每小題3分,共24分)11、(﹣4,6)【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反可得答案.【詳解】點P(4,﹣6)關(guān)于原點對稱的點的坐標是(﹣4,6),故答案為:(﹣4,6).【點睛】本題考查了一點關(guān)于原點對稱的問題,橫縱坐標取相反數(shù)就是對稱點的坐標.12、-3或4【分析】利用新定義得到,整理得到,然后利用因式分解法解方程.【詳解】根據(jù)題意得,,,,或,所以.故答案為或.【點睛】本題考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.13、1【分析】設(shè)該群的人數(shù)是x人,則每個人要發(fā)其他(x﹣1)張紅包,則共有x(x﹣1)張紅包,等于156個,由此可列方程.【詳解】設(shè)該群共有x人,依題意有:x(x﹣1)=156解得:x=﹣12(舍去)或x=1.故答案為1.【點睛】本題考查的是一元二次方程的應(yīng)用,正確找準等量關(guān)系列方程即可,比較簡單.14、1【分析】在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到紅球的頻率穩(wěn)定在20%左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,×100%=20%,解得,a=1,經(jīng)檢驗a=1是方程的根,故答案為:1.【點睛】本題主要考查的是頻率和概率問題,此類問題是中考常考的知識點,所以掌握頻率和概率是解題的關(guān)鍵.15、1【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出p,q的值進而得出答案.【詳解】解:∵點(p,2)與(﹣3,q)關(guān)于原點對稱,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案為:1.【點睛】此題主要考查了關(guān)于原點對稱點的性質(zhì),正確掌握關(guān)于原點對稱點的坐標之間的關(guān)系是解題關(guān)鍵.16、【詳解】解:原式=.故答案為.17、1【解析】根據(jù)題目中的圖形,可以發(fā)現(xiàn)〇的變化規(guī)律,從而可以得到第2019個圖形中〇的個數(shù).【詳解】由圖可得,第1個圖象中〇的個數(shù)為:,第2個圖象中〇的個數(shù)為:,第3個圖象中〇的個數(shù)為:,第4個圖象中〇的個數(shù)為:,……∴第2019個圖形中共有:個〇,故答案為:1.【點睛】本題考查圖形的變化類,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)圖形中〇的變化規(guī)律,利用數(shù)形結(jié)合的思想解答.18、【分析】根據(jù)點C,D分別為線段AB的右側(cè)和左側(cè)的黃金分割點,可得AC=BD=AB,BC=AB,再根據(jù)CD=BD-BC求出CD的長度,然后乘以5即可求解.【詳解】∵點C,D分別為線段AB的右側(cè)和左側(cè)的黃金分割點,∴AC=BD=AB=,BC=AB,∴CD=BD﹣BC=()﹣()=2﹣4,∴五邊形CDEFG的周長=5(2﹣4)=10﹣1.故答案為:10﹣1.【點睛】本題考查了黃金分割的定義:線段上一點把線段分為較長線段和較短線段,若較長線段是較短線段和整個線段的比例中項,則這個點叫這條線段的黃金分割點.三、解答題(共66分)19、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)當(dāng)點F與點A重合時,x=AB=6;當(dāng)EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;(2)分兩種情況:①當(dāng)點F在AB上時,作GH⊥BC于H,則四邊形ABHG是矩形,證明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面積公式和三角形面積公式即可得出答案;②當(dāng)點F在AD上時,作FM⊥BC于M,則FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面積公式和三角形面積公式即可得出答案;(3)當(dāng)x2+9x+12=15時,當(dāng)x2﹣21x+102=15時,分別解方程即可.【詳解】(1)當(dāng)點F與點A重合時,x=AB=6;當(dāng)EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;故答案為:6;10;(2)∵四邊形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分兩種情況:①當(dāng)點F在AB上時,如圖1所示:作GH⊥BC于H,則四邊形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面積為S=梯形ABEG的面積﹣△EFB的面積﹣△AGF的面積=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②當(dāng)點F在AD上時,如圖2所示:作FM⊥BC于M,則FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面積為S=梯形CDFE的面積﹣△CEG的面積﹣△DFG的面積=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102即S=x2﹣21x+102(6<x≤10);(3)當(dāng)x2+9x+12=15時,解得:x=﹣6±(負值舍去),∴x=﹣6+;當(dāng)x2﹣21x+102=15時,解得:x=14±(不合題意舍去);∴當(dāng)S=15時,此時x的值為﹣6+.【點睛】本題考查二次函數(shù)的動點問題,題目較難,解題時需注意分類討論,避免漏解.20、(1)甲的平均成績是8,乙的平均成績是8,(2)推薦甲參加省比賽更合適.理由見解析.【分析】(1)根據(jù)平均數(shù)的計算公式即可得甲、乙兩名運動員的平均成績;(2)根據(jù)方差公式即可求出甲、乙兩名運動員的方差,進而判斷出薦誰參加省比賽更合適.【詳解】(1)甲的平均成績是:(9+8+8+7)÷4=8,乙的平均成績是:(10+6+7+9)÷4=8,(2)甲的方差是:=,乙的方差是:=.所以推薦甲參加省比賽更合適.理由如下:兩人的平均成績相等,說明實力相當(dāng);但是甲的四次測試成績的方差比乙小,說明甲發(fā)揮較為穩(wěn)定,故推薦甲參加省比賽更合適.【點睛】本題考查了方差、算術(shù)平均數(shù),解決本題的關(guān)鍵是掌握方差、算術(shù)平均數(shù)的計算公式.21、(1)見解析;(2)見解析;(3)見解析【分析】(1)設(shè)小正方形的邊長為1,由勾股定理可知,由圖,結(jié)合題中要求可以O(shè)M,ON為鄰邊畫一個菱形;(2)符合題意的有菱形、箏形等是軸對稱圖形;(3)圖①和圖②的兩個四邊形不能是完全相同的.【詳解】解:(1)如圖即為所求(2)如圖即為所求【點睛】本題考查了軸對稱與中心對稱圖形,屬于開放題,熟練掌握軸對稱與中心對稱圖形的含義是解題的關(guān)鍵.22、.【分析】根據(jù)勾股定理求出AB,根據(jù)解直角三角形求出∠B,由余角的性質(zhì)求出∠A,即可得到答案.【詳解】解:如圖:∵,∴,∵,∴,∴,【點睛】本題考查了解直角三角形,以及勾股定理,解題的關(guān)鍵是熟練掌握解直角三角形.23、(1)拋物線的解析式為;(2)拋物線存在點M,點M的坐標或或或【分析】(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A、C點坐標,根據(jù)函數(shù)值相等的兩點關(guān)于對稱軸對稱,可得B點坐標,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分兩種情形分別求解即可解決問題;【詳解】解:(1)當(dāng)x=0時,y=2,即C(0,2),當(dāng)y=0時,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B關(guān)于對稱軸對稱,得B(1,0).將A、B、C點坐標代入函數(shù)解析式,得,解得,拋物線的解析式為y=﹣x2﹣x+2;(2)①當(dāng)點M在x軸上方時,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似,如圖,設(shè)M(m,﹣x2﹣x+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2,由勾股定理,得AC=,BC=,∵AC2+BC2=AB2,∴∠ACB=90°,當(dāng)△ANM∽△ACB時,∠CAB=∠MAN,此時點M與點C重合,M(0,2).當(dāng)△ANM∽△BCA時,∠MAN=∠ABC,此時M與C關(guān)于拋物線的對稱軸對稱,M(﹣3,2).②當(dāng)點M在x軸下方時,當(dāng)△ANM∽△ACB時,∠CAB=∠MAN,此時直線AM的解析式為y=﹣x﹣2,由,解得或,∴M(2,﹣3),當(dāng)△ANM′∽△BCA時,∠MAN=∠ABC,此時AM′∥BC,∴直線AM′的解析式為y=﹣2x﹣8,由,解得或,∴M(5,﹣18)綜上所述:拋物線存在點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論