版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆浙江省杭州市富陽區(qū)城區(qū)聯(lián)考數(shù)學(xué)九上期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,的直徑,是的弦,,垂足為,且,則的長為()A.10 B.12 C.16 D.182.如圖,某超市自動扶梯的傾斜角為,扶梯長為米,則扶梯高的長為()A.米 B.米 C.米 D.米3.如圖,是反比例函數(shù)與在x軸上方的圖象,點C是y軸正半軸上的一點,過點C作軸分別交這兩個圖象與點A和點B,P和Q在x軸上,且四邊形ABPQ為平行四邊形,則四邊形ABPQ的面積等于()A.20 B.15 C.10 D.54.已知,且α是銳角,則α的度數(shù)是()A.30° B.45° C.60° D.不確定5.下列二次根式中,與是同類二次根式的是()A. B. C. D.6.若,,為二次函數(shù)的圖象上的三點,則,,的大小關(guān)系是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y27.兩個相似多邊形的面積比是9∶16,其中小多邊形的周長為36cm,則較大多邊形的周長為)A.48cm B.54cm C.56cm D.64cm8.如圖,已知DE∥BC,CD和BE相交于點O,S△DOE:S△COB=4:9,則AE:EC為()A.2:1 B.2:3 C.4:9 D.5:49.如圖是由五個相同的小立方塊搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.10.如圖,在平行四邊形中,、相交于點,點是的中點,連接并延長交于點,已知的面積為4,則的面積為()A.12 B.28 C.36 D.3811.如圖,的頂點在拋物線上,將繞點順時針旋轉(zhuǎn),得到,邊與該拋物線交于點,則點的坐標(biāo)為().A. B. C. D.12.三角形兩邊長分別是和,第三邊長是一元二次方程的一個實數(shù)根,則該三角形的面積是()A. B. C.或 D.或二、填空題(每題4分,共24分)13.如圖,有一張矩形紙片,長15cm,寬9cm,在它的四角各剪去一個同樣的小正方形,然折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是48cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為_____.14.中,如果銳角滿足,則_________度15.如圖,分別以等邊三角形的每個頂點為圓心,邊長為半徑,在另兩個頂點之間作一段弧,三段弧圍成的曲邊三角形稱為“勒洛三角形”,若等邊三角形的邊長為2,則“勒洛三角形”的面積為_________.16.方程(x+1)(x﹣2)=5化成一般形式是_____.17.如圖,等邊△ABO的邊長為2,點B在x軸上,反比例函數(shù)圖象經(jīng)過點A,將△ABO繞點O順時針旋轉(zhuǎn)a(0°<a<360°),使點A仍落在雙曲線上,則a=_____.18.在矩形中,點是邊上的一個動點,連接,過點作與點,交射線于點,連接,則的最小值是_____________三、解答題(共78分)19.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B,(1)求證:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的長.20.(8分)A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.21.(8分)學(xué)校為獎勵“漢字聽寫大賽”的優(yōu)秀學(xué)生,派王老師到商店購買某種獎品,他看到如表所示的關(guān)于該獎品的銷售信息,便用1400元買回了獎品,求王老師購買該獎品的件數(shù).購買件數(shù)銷售價格不超過30件單價40元超過30件每多買1件,購買的所有物品單價將降低0.5元,但單價不得低于30元22.(10分)如圖,在中,是上的高,.(1)求證:;(2)若,求的長.23.(10分)定義:有兩個相鄰內(nèi)角和等于另兩個內(nèi)角和的一半的四邊形稱為半四邊形,這兩個角的夾邊稱為對半線.(1)如圖1,在對半四邊形中,,求與的度數(shù)之和;(2)如圖2,為銳角的外心,過點的直線交,于點,,,求證:四邊形是對半四邊形;(3)如圖3,在中,,分別是,上一點,,,為的中點,,當(dāng)為對半四邊形的對半線時,求的長.24.(10分)如圖:在平面直角坐標(biāo)系中,直線:與軸交于點,經(jīng)過點的拋物線的對稱軸是.(1)求拋物線的解析式.(2)平移直線經(jīng)過原點,得到直線,點是直線上任意一點,軸于點,軸于點,若點在線段上,點在線段的延長線上,連接,,且.求證:.(3)若(2)中的點坐標(biāo)為,點是軸上的點,點是軸上的點,當(dāng)時,拋物線上是否存在點,使四邊形是矩形?若存在,請求出點的坐標(biāo),如果不存在,請說明理由.25.(12分)如圖,為了測量山腳到塔頂?shù)母叨龋吹拈L),某同學(xué)在山腳處用測角儀測得塔頂?shù)难鼋菫?,再沿坡度為的小山坡前進(jìn)400米到達(dá)點,在處測得塔頂?shù)难鼋菫?(1)求坡面的鉛垂高度(即的長);(2)求的長.(結(jié)果保留根號,測角儀的高度忽略不計).26.如圖,已知拋物線與軸相交于、兩點,與軸相交于點,若已知點的坐標(biāo)為.(1)求拋物線的解析式;(2)求線段所在直線的解析式;(3)在拋物線的對稱軸上是否存在點,使為等腰三角形?若存在,求出符合條件的點坐標(biāo);若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】連接OC,根據(jù)圓的性質(zhì)和已知條件即可求出OC=OB=,BE=,從而求出OE,然后根據(jù)垂徑定理和勾股定理即可求CE和DE,從而求出CD.【詳解】解:連接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故選:C.【點睛】此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.2、A【詳解】解:由題意,在Rt△ABC中,∠ABC=31°,由三角函數(shù)關(guān)系可知,
AC=AB?sinα=9sin31°(米).
故選A.【點睛】本題主要考查了三角函數(shù)關(guān)系在直角三角形中的應(yīng)用.3、C【解析】分別過A、B作AD、BE垂直x軸,易證,則平行四邊形ABPQ的面積等于矩形ADEB的面積,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義分別求得矩形ADOC和矩形BEOC的面積,相加即可求得結(jié)果.【詳解】解:如圖,分別過A、B作AD、BE垂直x軸于點D、點E,則四邊形ADEB是矩形,易證,∴S矩形ABED,∵點A在反比例函數(shù)上,由反比例函數(shù)比例系數(shù)k的幾何意義可得:S矩形ADOC=|k|=3,同理可得:S矩形BEOC=7,∴S矩形ABED=S矩形ADOC+S矩形BEOC=3+7=10,故選:C.【點睛】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義,熟練運用比例系數(shù)k的幾何意義是解決本題的關(guān)鍵.4、C【分析】根據(jù)sin60°=解答即可.【詳解】解:∵α為銳角,sinα=,sin60°=,∴α=60°.故選:C.【點睛】本題考查的是特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.5、A【解析】試題分析:因為=2,所以與是同類二次根式,所以A正確;因為與不是同類二次根式,所以B錯誤;因為,所以與不是同類二次根式,所以B錯誤;因為,所以與不是同類二次根式,所以B錯誤;故選A.考點:同類二次根式6、B【解析】試題分析:根據(jù)二次函數(shù)的解析式得出圖象的開口向上,對稱軸是直線x=﹣2,根據(jù)x>﹣2時,y隨x的增大而增大,即可得出答案.解:∵y=(x+2)2﹣9,∴圖象的開口向上,對稱軸是直線x=﹣2,A(﹣4,y1)關(guān)于直線x=﹣2的對稱點是(0,y1),∵﹣<0<3,∴y2<y1<y3,故選B.點評:本題主要考查對二次函數(shù)圖象上點的坐標(biāo)特征,二次函數(shù)的性質(zhì)等知識點的理解和掌握,能熟練地運用二次函數(shù)的性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.7、A【解析】試題分析:根據(jù)相似多邊形對應(yīng)邊之比、周長之比等于相似比,而面積之比等于相似比的平方計算即可.解:兩個相似多邊形的面積比是9:16,面積比是周長比的平方,則大多邊形與小多邊形的相似比是4:1.相似多邊形周長的比等于相似比,因而設(shè)大多邊形的周長為x,則有=,解得:x=2.大多邊形的周長為2cm.故選A.考點:相似多邊形的性質(zhì).8、A【解析】試題解析:∵ED∥BC,故選A.點睛:相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.9、A【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上面看易得上面一層有3個正方形,下面左邊有一個正方形.故選A.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.10、A【分析】根據(jù)平行是四邊形的性質(zhì)得到AD∥BC,OA=OC,得到△AFE∽△CEB,根據(jù)點E是OA的中點,得到,△AEB的面積=△OEB的面積,計算即可.【詳解】∵四邊形ABCD是平行四邊形,
∴AD∥BC,OA=OC,
∴△AFE∽△CEB,∴∵點E是OA的中點,
∴,,∴,∴,∴.故選:A.【點睛】本題考查的是相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.11、C【分析】先根據(jù)待定系數(shù)法求得拋物線的解析式,然后根據(jù)題意求得D(0,2),且DC∥x軸,從而求得P的縱坐標(biāo)為2,代入求得的解析式即可求得P的坐標(biāo).【詳解】∵Rt△OAB的頂點A(?2,4)在拋物線上,∴4=4a,解得a=1,∴拋物線為,∵點A(?2,4),∴B(?2,0),∴OB=2,∵將Rt△OAB繞點O順時針旋轉(zhuǎn),得到△OCD,∴D點在y軸上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x軸,∴P點的縱坐標(biāo)為2,代入,得,解得∴P故答案為:.【點睛】考查二次函數(shù)圖象上點的坐標(biāo)特征,坐標(biāo)與圖形變化-旋轉(zhuǎn),掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.12、D【分析】先利用因式分解法解方程得到所以,,再分類討論:當(dāng)?shù)谌呴L為6時,如圖,在中,,,作,則,利用勾股定理計算出,接著計算三角形面積公式;當(dāng)?shù)谌呴L為10時,利用勾股定理的逆定理可判斷此三角形為直角三角形,然后根據(jù)三角形面積公式計算三角形面積.【詳解】解:,或,所以,,I.當(dāng)?shù)谌呴L為6時,如圖,在中,,,作,則,,所以該三角形的面積;II.當(dāng)?shù)谌呴L為10時,由于,此三角形為直角三角形,所以該三角形的面積,綜上所述:該三角形的面積為24或.故選:D.【點睛】本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質(zhì),勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.二、填空題(每題4分,共24分)13、(15﹣2x)(9﹣2x)=1.【分析】設(shè)剪去的小正方形邊長是xcm,則紙盒底面的長為(15﹣2x)cm,寬為(9﹣2x)cm,根據(jù)長方形的面積公式結(jié)合紙盒的底面(圖中陰影部分)面積是1cm2,即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:設(shè)剪去的小正方形邊長是xcm,則紙盒底面的長為(15﹣2x)cm,寬為(9﹣2x)cm,根據(jù)題意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【點睛】此題主要考查一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系進(jìn)行列方程.14、【分析】根據(jù)絕對值與偶數(shù)次冪的非負(fù)性,可得且,進(jìn)而求出∠A,∠B的值,即可得到答案.【詳解】∵,∴且,∴且,∴∠A=45°,∠B=30°,∵在中,,∴105°.故答案是:105°.【點睛】本題主要考查絕對值與偶數(shù)次冪的非負(fù)性,特殊三角函數(shù)以及三角形內(nèi)角和定理,掌握絕對值與偶數(shù)次冪的非負(fù)性,是解題的關(guān)鍵.15、【分析】圖中勒洛三角形是由三塊相同的扇形疊加而成,其面積三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】解:過作于,∵是等邊三角形,,,,,,的面積為,,勒洛三角形的面積,故答案為:.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出勒洛三角形的面積三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關(guān)鍵.16、x2﹣x﹣7=1.【分析】一元二次方程,b,c是常數(shù)且的a、b、c分別是二次項系數(shù)、一次項系數(shù)、常數(shù)項.【詳解】解:方程(x+1)(x﹣2)=5化成一般形式是x2﹣x﹣7=1,故答案為:x2﹣x﹣7=1.【點睛】本題考查了一元二次方程的一般形式:,b,c是常數(shù)且a≠1)特別要注意a≠1的條件.這是在做題過程中容易忽視的知識點.在一般形式中叫二次項,bx叫一次項,是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.17、30°或180°或210°【分析】根據(jù)等邊三角形的性質(zhì),雙曲線的軸對稱性和中心對稱性即可求解.【詳解】根據(jù)反比例函數(shù)的軸對稱性,A點關(guān)于直線y=x對稱,∵△OAB是等邊三角形,∴∠AOB=60°,∴AO與直線y=x的夾角是15°,∴a=2×15°=30°時點A落在雙曲線上,根據(jù)反比例函數(shù)的中心對稱性,∴點A旋轉(zhuǎn)到直線OA上時,點A落在雙曲線上,∴此時a=180°,根據(jù)反比例函數(shù)的軸對稱性,繼續(xù)旋轉(zhuǎn)30°時,點A落在雙曲線上,∴此時a=210°;故答案為:30°或180°或210°.考點:(1)、反比例函數(shù)圖象上點的坐標(biāo)特征;(2)、等邊三角形的性質(zhì);(3)、坐標(biāo)與圖形變化-旋轉(zhuǎn).18、【分析】根據(jù)題意可點G在以AB為直徑的圓上,設(shè)圓心為H,當(dāng)HGC在一條直線上時,CG的值最值,利用勾股定理求出CH的長,CG就能求出了.【詳解】解:點的運動軌跡為以為直徑的為圓心的圓弧。連結(jié)GH,CH,CG≥CH-GH,即CG=CH-GH時,也就是當(dāng)三點共線時,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案為:【點睛】本題考查了矩形的性質(zhì)、勾股定理、三角形三邊的關(guān)系.CGH三點共線時CG最短是解決問題的關(guān)鍵.把動點轉(zhuǎn)化成了定點,問題就迎刃而解了..三、解答題(共78分)19、(1)見解析(2)AF=2【詳解】(1)證明:∵四邊形ABCD是平行四邊形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=180°∵∠AFE+∠AFD=,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四邊形ABCD是平行四邊形∴AD∥BCCD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴∴AF=20、(1);(2).【解析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點:用列舉法求概率.21、王老師購買該獎品的件數(shù)為40件.【解析】試題分析:根據(jù)題意首先表示出每件商品的價格,進(jìn)而得出購買商品的總錢數(shù),進(jìn)而得出等式求出答案.試題解析:∵30×40=1200<1400,∴獎品數(shù)超過了30件,設(shè)總數(shù)為x件,則每件商品的價格為:[40﹣(x﹣30)×0.5]元,根據(jù)題意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70時,40﹣(70﹣30)×0.5=20<30,∴x=70不合題意舍去,答:王老師購買該獎品的件數(shù)為40件.考點:一元二次方程的應(yīng)用.22、(1)見解析;(2).【分析】(1)由于tanB=cos∠DAC,根據(jù)正切和余弦的概念可證明AC=BD;
(2)根據(jù),AD=24,可求出AC的長,再利用勾股定理可求出CD的長,再根據(jù)BC=CD+BD=CD+AC可得出結(jié)果.【詳解】(1)證明:是上的高,.在和中,,,又,,;(2)解:在中,,AD=24,則,.又,=AC+CD=26+10=1.【點睛】此題考查解直角三角形、直角三角形的性質(zhì)等知識,掌握基本概念和性質(zhì)是解題的關(guān)鍵.23、(1);(2)詳見解析;(3)5.25.【分析】(1)根據(jù)四邊形內(nèi)角和與對半四邊形的定義即可求解;(2)根據(jù)三角形外心的性質(zhì)得,得到,從而求出=60°,再得到,根據(jù)對半四邊形的定義即可證明;(3)先根據(jù)為對半四邊形的對半線得到,故可證明為等邊三角形,再根據(jù)一線三等角得到,故,列出比例式即可求出AD,故可求解AC的長.【詳解】(1)∵四邊形內(nèi)角和為∴,∵∴=則,∴(2)連結(jié),由三角形外心的性質(zhì)可得,所以,,所以,則在四邊形中,,則另兩個內(nèi)角之和為,所以四邊形為對半四邊形;(3)若為對半線,則,∴所以為等邊三角形∵∴又∴∵∴,∴∵F為DE中點,故∴∴【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知根據(jù)題意弄懂對半四邊形,利用相似三角形的性質(zhì)進(jìn)行求解.24、(1);(2)證明見解析;(3)存在,點的坐標(biāo)為或.【分析】(1)先求得點A的坐標(biāo),然后依據(jù)拋物線過點A,對稱軸是,列出關(guān)于a、c的方程組求解即可;
(2)設(shè)P(3n,n),則PC=3n,PB=n,然后再證明∠FPC=∠EPB,最后通過等量代換進(jìn)行證明即可;
(3)設(shè),然后用含t的式子表示BE的長,從而可得到CF的長,于是可得到點F的坐標(biāo),然后依據(jù)中點坐標(biāo)公式可得到,,從而可求得點Q的坐標(biāo)(用含t的式子表示),最后,將點Q的坐標(biāo)代入拋物線的解析式求得t的值即可.【詳解】解:(1)當(dāng)時,,解得,即,拋物線過點,對稱軸是,得,解得,拋物線的解析式為;(2)∵平移直線經(jīng)過原點,得到直線,∴直線的解析式為.∵點是直線上任意一點,∴,則,.又∵,∴.∵軸,軸∴∴∵,∴,∴.(3)設(shè),點在點的左側(cè)時,如圖所示,則.∵,∴.∴.∵四邊形為矩形,∴,,∴,,∴,.將點的坐標(biāo)代入拋物線的解析式得:,解得:或(舍去).∴.當(dāng)點在點的右側(cè)時,如下圖所示,則.∵,∴.∴.∵四邊形為矩形,∴,,∴,,∴,.將點的坐標(biāo)代入拋物線的解析式得:,解得:或(舍去).∴.綜上所述,點的坐標(biāo)為或.【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了矩形的性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、中點坐標(biāo)公式,用含t的式子表示點Q的坐標(biāo)是解題的關(guān)鍵.25、(1)200;(2).【分析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術(shù)學(xué)院《經(jīng)濟(jì)師資格》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東水利電力職業(yè)技術(shù)學(xué)院《服裝工藝制作二》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東石油化工學(xué)院《經(jīng)濟(jì)學(xué)世界經(jīng)濟(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東汕頭幼兒師范高等??茖W(xué)?!缎畔⒎治雠c預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東農(nóng)工商職業(yè)技術(shù)學(xué)院《中小企業(yè)管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東南方職業(yè)學(xué)院《現(xiàn)代食品高新技術(shù)進(jìn)展》2023-2024學(xué)年第一學(xué)期期末試卷
- 打造美麗鄉(xiāng)村-共筑人與自然和諧-鄉(xiāng)鎮(zhèn)林業(yè)站年終工作總結(jié)
- 【名師一號】2020-2021學(xué)年高中英語(北師大版)必修二-雙基限時練3
- 【9語一?!?024年合肥市瑤海區(qū)中考一模語文試題
- 【名師一號】2021年岳麓歷史必修3-雙基限時練17
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識
- 促銷活動方案(共29頁).ppt
- 華中數(shù)控車床編程及操作
- 農(nóng)民專業(yè)合作社財務(wù)報表(三張表)
- 培訓(xùn)準(zhǔn)備工作清單
- 沉井工程檢驗批全套【精選文檔】
- 貝類增養(yǎng)殖考試資料
- 旅游專業(yè)旅游概論試題有答案
- 3、起重工、焊工、電工安全技術(shù)交底
- 水稻幼穗分化八個時期的劃分表
- 卡特彼勒生產(chǎn)體系手冊(PDF62頁)
評論
0/150
提交評論