2024年天津高考數(shù)學(xué)真題試題(原卷版+含解析)_第1頁
2024年天津高考數(shù)學(xué)真題試題(原卷版+含解析)_第2頁
2024年天津高考數(shù)學(xué)真題試題(原卷版+含解析)_第3頁
2024年天津高考數(shù)學(xué)真題試題(原卷版+含解析)_第4頁
2024年天津高考數(shù)學(xué)真題試題(原卷版+含解析)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024年天津高考數(shù)學(xué)一、單選題1.集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.下列圖中,線性相關(guān)性系數(shù)最大的是(

)A. B.C. D.4.下列函數(shù)是偶函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.若SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.若SKIPIF1<0為兩條不同的直線,SKIPIF1<0為一個平面,則下列結(jié)論中正確的是(

)A.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0相交7.已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0.則SKIPIF1<0在SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.SKIPIF1<08.雙曲線SKIPIF1<0的左、右焦點分別為SKIPIF1<0是雙曲線右支上一點,且直線SKIPIF1<0的斜率為2.SKIPIF1<0是面積為8的直角三角形,則雙曲線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.一個五面體SKIPIF1<0.已知SKIPIF1<0,且兩兩之間距離為1.并已知SKIPIF1<0.則該五面體的體積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題10.已知SKIPIF1<0是虛數(shù)單位,復(fù)數(shù)SKIPIF1<0.11.在SKIPIF1<0的展開式中,常數(shù)項為.12.圓SKIPIF1<0的圓心與拋物線SKIPIF1<0的焦點SKIPIF1<0重合,SKIPIF1<0為兩曲線的交點,則原點到直線SKIPIF1<0的距離為.13.SKIPIF1<0五種活動,甲、乙都要選擇三個活動參加.甲選到SKIPIF1<0的概率為;已知乙選了SKIPIF1<0活動,他再選擇SKIPIF1<0活動的概率為.14.在邊長為1的正方形SKIPIF1<0中,點SKIPIF1<0為線段SKIPIF1<0的三等分點,CE=12DE,BE=λBA+μBC,則SKIPIF1<0;SKIPIF1<0為線段SKIPIF1<0上的動點,SKIPIF1<0為SKIPIF1<0中點,則SKIPIF1<0的最小值為.15.若函數(shù)SKIPIF1<0恰有一個零點,則SKIPIF1<0的取值范圍為.三、解答題16.在SKIPIF1<0中,角SKIPIF1<0所對的邊分別為SKIPIF1<0,已知SKIPIF1<0.(1)求SKIPIF1<0;(2)求SKIPIF1<0;(3)求SKIPIF1<0的值.17.已知四棱柱SKIPIF1<0中,底面SKIPIF1<0為梯形,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0.SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0是SKIPIF1<0的中點.(1)求證SKIPIF1<0平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0的夾角余弦值;(3)求點SKIPIF1<0到平面SKIPIF1<0的距離.18.已知橢圓SKIPIF1<0橢圓的離心率SKIPIF1<0.左頂點為SKIPIF1<0,下頂點為SKIPIF1<0是線段SKIPIF1<0的中點,其中SKIPIF1<0.(1)求橢圓方程.(2)過點SKIPIF1<0的動直線與橢圓有兩個交點SKIPIF1<0.在SKIPIF1<0軸上是否存在點SKIPIF1<0使得SKIPIF1<0.若存在求出這個SKIPIF1<0點縱坐標(biāo)的取值范圍,若不存在請說明理由.19.已知數(shù)列SKIPIF1<0是公比大于0的等比數(shù)列.其前SKIPIF1<0項和為SKIPIF1<0.若SKIPIF1<0.(1)求數(shù)列SKIPIF1<0前SKIPIF1<0項和SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0.(?。┊?dāng)SKIPIF1<0時,求證:SKIPIF1<0;(ⅱ)求SKIPIF1<0.20.設(shè)函數(shù)SKIPIF1<0.(1)求SKIPIF1<0圖象上點SKIPIF1<0處的切線方程;(2)若SKIPIF1<0在SKIPIF1<0時恒成立,求SKIPIF1<0的值;(3)若SKIPIF1<0,證明SKIPIF1<0.2024年天津高考數(shù)學(xué)一、單選題1.集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為集合SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,故選B2.設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【詳解】根據(jù)立方的性質(zhì)和指數(shù)函數(shù)的性質(zhì),SKIPIF1<0和SKIPIF1<0都當(dāng)且僅當(dāng)SKIPIF1<0,所以二者互為充要條件.故選C.3.下列圖中,線性相關(guān)性系數(shù)最大的是(

)A. B.C. D.【答案】A【詳解】觀察4幅圖可知,A圖散點分布比較集中,且大體接近某一條直線,線性回歸模型擬合效果比較好,呈現(xiàn)明顯的正相關(guān),SKIPIF1<0值相比于其他3圖更接近1.故選A4.下列函數(shù)是偶函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】A,設(shè)SKIPIF1<0,函數(shù)定義域為SKIPIF1<0,但SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,A錯誤;B,設(shè)SKIPIF1<0,函數(shù)定義域為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0為偶函數(shù),B正確;C,設(shè)SKIPIF1<0,函數(shù)定義域為SKIPIF1<0,不關(guān)于原點對稱,則SKIPIF1<0不是偶函數(shù),C錯誤;D,設(shè)SKIPIF1<0,函數(shù)定義域為SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0不是偶函數(shù),D錯誤.故選B.5.若SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為SKIPIF1<0在SKIPIF1<0上遞增,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上遞增,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選B6.若SKIPIF1<0為兩條不同的直線,SKIPIF1<0為一個平面,則下列結(jié)論中正確的是(

)A.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0相交【答案】C【詳解】A,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0平行或異面或相交,A錯誤.B,若SKIPIF1<0,則SKIPIF1<0平行或異面或相交,B錯誤.C,SKIPIF1<0,過SKIPIF1<0作平面SKIPIF1<0,使得SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,C正確.D,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0相交或異面,D錯誤.故選C.7.已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0.則SKIPIF1<0在SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.SKIPIF1<0【答案】A【分析】結(jié)合周期公式求出SKIPIF1<0,得SKIPIF1<0,再整體求出SKIPIF1<0時,SKIPIF1<0的范圍?!驹斀狻縎KIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,畫出SKIPIF1<0圖象,如下圖,由圖可知,SKIPIF1<0在SKIPIF1<0上遞減,所以,當(dāng)SKIPIF1<0時,SKIPIF1<0故選A8.雙曲線SKIPIF1<0的左、右焦點分別為SKIPIF1<0是雙曲線右支上一點,且直線SKIPIF1<0的斜率為2.SKIPIF1<0是面積為8的直角三角形,則雙曲線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】可利用SKIPIF1<0三邊斜率問題與正弦定理,轉(zhuǎn)化出三邊比例,設(shè)SKIPIF1<0,由面積公式求出SKIPIF1<0,由勾股定理得出SKIPIF1<0,結(jié)合第一定義再求出SKIPIF1<0.【詳解】如下圖:點SKIPIF1<0必落在第四象限,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,求得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,求得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,由正弦定理可得:SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,由雙曲線第一定義可得:SKIPIF1<0,SKIPIF1<0,因此雙曲線的方程為SKIPIF1<0.故選C9.一個五面體SKIPIF1<0.已知SKIPIF1<0,且兩兩之間距離為1.并已知SKIPIF1<0.則該五面體的體積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】用一個完全相同的五面體SKIPIF1<0(頂點與五面體SKIPIF1<0一一對應(yīng))與該五面體相嵌,使得SKIPIF1<0;SKIPIF1<0;SKIPIF1<0重合,因為SKIPIF1<0,且兩兩之間距離為1.SKIPIF1<0,則形成的新組合體為一個三棱柱,該三棱柱的直截面(與側(cè)棱垂直的截面)為邊長為1的等邊三角形,側(cè)棱長為SKIPIF1<0,SKIPIF1<0.故選C.二、填空題10.已知SKIPIF1<0是虛數(shù)單位,復(fù)數(shù)SKIPIF1<0.【答案】SKIPIF1<0【詳解】SKIPIF1<0.答案為SKIPIF1<0.11.在SKIPIF1<0的展開式中,常數(shù)項為.【答案】20【詳解】因為SKIPIF1<0的展開式的通項為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,因此常數(shù)項為SKIPIF1<0.答案為20.12.圓SKIPIF1<0的圓心與拋物線SKIPIF1<0的焦點SKIPIF1<0重合,SKIPIF1<0為兩曲線的交點,則原點到直線SKIPIF1<0的距離為.【答案】SKIPIF1<0/SKIPIF1<0【詳解】圓SKIPIF1<0的圓心為SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0(舍),故SKIPIF1<0,故直線SKIPIF1<0即SKIPIF1<0或SKIPIF1<0,因此原點到直線SKIPIF1<0的距離為SKIPIF1<0,答案為SKIPIF1<013.SKIPIF1<0五種活動,甲、乙都要選擇三個活動參加.甲選到SKIPIF1<0的概率為;已知乙選了SKIPIF1<0活動,他再選擇SKIPIF1<0活動的概率為.【答案】SKIPIF1<0SKIPIF1<0【詳解】解法一:從五個活動中選三個的情況有:SKIPIF1<0,共10種情況,其中甲選到SKIPIF1<0有6種可能性:SKIPIF1<0,則甲選到SKIPIF1<0得概率為:SKIPIF1<0;乙選SKIPIF1<0活動有6種可能性:SKIPIF1<0,其中再選則SKIPIF1<0有3種可能性:SKIPIF1<0,因此乙選了SKIPIF1<0活動,他再選擇SKIPIF1<0活動的概率為SKIPIF1<0.解法二:設(shè)甲、乙選到SKIPIF1<0為事件SKIPIF1<0,乙選到SKIPIF1<0為事件SKIPIF1<0,則甲選到SKIPIF1<0的概率為SKIPIF1<0;乙選了SKIPIF1<0活動,他再選擇SKIPIF1<0活動的概率為SKIPIF1<0答案SKIPIF1<0;SKIPIF1<014.在邊長為1的正方形SKIPIF1<0中,點SKIPIF1<0為線段SKIPIF1<0的三等分點,CE=12DE,BE=λBA+μBC,則SKIPIF1<0;SKIPIF1<0為線段SKIPIF1<0上的動點,SKIPIF1<0為SKIPIF1<0中點,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0SKIPIF1<0【分析】解法一:以SKIPIF1<0為基底向量,根據(jù)向量的線性運算求SKIPIF1<0,即可得SKIPIF1<0,設(shè)BF=kBE,求AF,DG,結(jié)合數(shù)量積的運算律求SKIPIF1<0的最小值;解法二:建系標(biāo)點,根據(jù)向量的坐標(biāo)運算求SKIPIF1<0,即可得SKIPIF1<0,設(shè)SKIPIF1<0,求AF,DG,結(jié)合數(shù)量積的坐標(biāo)運算求SKIPIF1<0的最小值.【詳解】解法一:因為SKIPIF1<0,即CE=23BA,則BE=可得SKIPIF1<0,所以SKIPIF1<0;根據(jù)題意可知:SKIPIF1<0,因為SKIPIF1<0為線段SKIPIF1<0上的動點,設(shè)SKIPIF1<0,則SKIPIF1<0,又因為SKIPIF1<0為SKIPIF1<0中點,則SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0,又因為SKIPIF1<0,可知:當(dāng)SKIPIF1<0時,SKIPIF1<0取到最小值SKIPIF1<0;解法二:以B為坐標(biāo)原點建立平面直角坐標(biāo)系,如圖所示,則SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;因為點SKIPIF1<0在線段SKIPIF1<0上,設(shè)SKIPIF1<0,且SKIPIF1<0為SKIPIF1<0中點,則SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取到最小值為SKIPIF1<0;答案為SKIPIF1<0;SKIPIF1<0.15.若函數(shù)SKIPIF1<0恰有一個零點,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【分析】結(jié)合函數(shù)零點與兩函數(shù)的交點的關(guān)系,構(gòu)造函數(shù)SKIPIF1<0與SKIPIF1<0,則兩函數(shù)圖象有唯一交點,分SKIPIF1<0、SKIPIF1<0與SKIPIF1<0進(jìn)行討論,當(dāng)SKIPIF1<0時,計算函數(shù)定義域可得SKIPIF1<0或SKIPIF1<0,計算可得SKIPIF1<0時,兩函數(shù)在SKIPIF1<0軸左側(cè)有一交點,則只需找到當(dāng)SKIPIF1<0時,在SKIPIF1<0軸右側(cè)無交點的情況即可得;當(dāng)SKIPIF1<0時.【詳解】令SKIPIF1<0,即SKIPIF1<0,根據(jù)題意可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0,不符合要求,舍去;當(dāng)SKIPIF1<0時,則SKIPIF1<0,即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0有唯一交點,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0或SKIPIF1<0(正值舍去),當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0,有兩解,舍去,即當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時有唯一解,則當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時需無解,當(dāng)SKIPIF1<0,且SKIPIF1<0時,由函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,令SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0圖象為雙曲線SKIPIF1<0右支的SKIPIF1<0軸上方部分向右平移SKIPIF1<0所得,由SKIPIF1<0的漸近線方程為SKIPIF1<0,即SKIPIF1<0部分的漸近線方程為SKIPIF1<0,其斜率為SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0時的斜率SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0(舍去),且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故有SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0符合要求;當(dāng)SKIPIF1<0時,則SKIPIF1<0,即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0有唯一交點,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0(負(fù)值舍去)或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0,有兩解,舍去,即當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時有唯一解,則當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時需無解,當(dāng)SKIPIF1<0,且SKIPIF1<0時,由函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,同理可得:SKIPIF1<0時,SKIPIF1<0圖象為雙曲線SKIPIF1<0左支的SKIPIF1<0軸上方部分向左平移SKIPIF1<0所得,SKIPIF1<0部分的漸近線方程為SKIPIF1<0,其斜率為SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0時的斜率SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0(舍去),且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因此有SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0符合要求;綜上所述,SKIPIF1<0.答案為SKIPIF1<0.三、解答題16.在SKIPIF1<0中,角SKIPIF1<0所對的邊分別為SKIPIF1<0,已知SKIPIF1<0.(1)求SKIPIF1<0;(2)求SKIPIF1<0;(3)求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】SKIPIF1<0,利用余弦定理即可得到方程,解出即可;法一:求出SKIPIF1<0,再利用正弦定理即可;法二:利用余弦定理求出SKIPIF1<0,則得到SKIPIF1<0;法一:根據(jù)大邊對大角確定SKIPIF1<0為銳角,則得到SKIPIF1<0,再利用二倍角公式和兩角差的余弦公式即可;法二:直接利用二倍角公式和兩角差的余弦公式即可.【詳解】(1)設(shè)SKIPIF1<0,SKIPIF1<0,則根據(jù)余弦定理得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(負(fù)舍);則SKIPIF1<0.(2)法一:因為SKIPIF1<0為三角形內(nèi)角,所以SKIPIF1<0,再根據(jù)正弦定理得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,法二:由余弦定理得SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0(3)法一:因為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,由(2)法一知SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0.法二:SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0為三角形內(nèi)角,所以SKIPIF1<0,所以SKIPIF1<017.已知四棱柱SKIPIF1<0中,底面SKIPIF1<0為梯形,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0.SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0是SKIPIF1<0的中點.(1)求證SKIPIF1<0平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0的夾角余弦值;(3)求點SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)見解析(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)取SKIPIF1<0中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,借助中位線的性質(zhì)與平行四邊形性質(zhì)定理可得SKIPIF1<0;(2)建立適當(dāng)空間直角坐標(biāo)系,計算兩平面的空間向量,再利用空間向量夾角公式計算;(3)借助空間中點到平面的距離公式計算.【詳解】(1)取SKIPIF1<0中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0是SKIPIF1<0的中點,故SKIPIF1<0,且SKIPIF1<0,由SKIPIF1<0是SKIPIF1<0的中點,故SKIPIF1<0,且SKIPIF1<0,則有SKIPIF1<0、SKIPIF1<0,故四邊形SKIPIF1<0是平行四邊形,故SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0;(2)以SKIPIF1<0為原點建立如圖所示空間直角坐標(biāo)系,有SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則有SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,設(shè)平面SKIPIF1<0與平面SKIPIF1<0的法向量分別為SKIPIF1<0、SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,分別取SKIPIF1<0,則有SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,故平面SKIPIF1<0與平面SKIPIF1<0的夾角余弦值為SKIPIF1<0;(3)由SKIPIF1<0,平面SKIPIF1<0的法向量為SKIPIF1<0,則有SKIPIF1<0,因此點SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.18.已知橢圓SKIPIF1<0橢圓的離心率SKIPIF1<0.左頂點為SKIPIF1<0,下頂點為SKIPIF1<0是線段SKIPIF1<0的中點,其中SKIPIF1<0.(1)求橢圓方程.(2)過點SKIPIF1<0的動直線與橢圓有兩個交點SKIPIF1<0.在SKIPIF1<0軸上是否存在點SKIPIF1<0使得SKIPIF1<0.若存在求出這個SKIPIF1<0點縱坐標(biāo)的取值范圍,若不存在請說明理由.【答案】(1)SKIPIF1<0(2)存在SKIPIF1<0,使得SKIPIF1<0恒成立.【分析】(1)根據(jù)橢圓的離心率和三角形的面積可求基本量,從而可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)該直線方程為:SKIPIF1<0,SKIPIF1<0,聯(lián)立直線方程和橢圓方程并消元,結(jié)合韋達(dá)定理和向量數(shù)量積的坐標(biāo)運算可用SKIPIF1<0表示SKIPIF1<0,再根據(jù)SKIPIF1<0可求SKIPIF1<0的范圍.【詳解】(1)因為橢圓的離心率為SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0為半焦距,所以SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因此橢圓方程為:SKIPIF1<0.(2)若過點SKIPIF1<0的動直線的斜率存在,則可設(shè)該直線方程為:SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0而SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,因為SKIPIF1<0恒成立,故SKIPIF1<0,解得SKIPIF1<0.若過點SKIPIF1<0的動直線的斜率不存在,則SKIPIF1<0或SKIPIF1<0,此時需SKIPIF1<0,兩者結(jié)合可得SKIPIF1<0.綜上所述,存在SKIPIF1<0,使得SKIPIF1<0恒成立.19.已知數(shù)列SKIPIF1<0是公比大于0的等比數(shù)列.其前SKIPIF1<0項和為SKIPIF1<0.若SKIPIF1<0.(1)求數(shù)列SKIPIF1<0前SKIPIF1<0項和SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0.(?。┊?dāng)SKIPIF1<0時,求證:SKIPIF1<0;(ⅱ)求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)①見詳解;②SKIPIF1<0【分析】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,根據(jù)題意結(jié)合等比數(shù)列通項公式求SKIPIF1<0;(2)①根據(jù)題意分析可知SKIPIF1<0,SKIPIF1<0,利用作差法分析證明;②根據(jù)題意結(jié)合等差數(shù)列求和公式可得SKIPIF1<0.【詳解】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以SKIPIF1<0.(2)(i)根據(jù)(1)可知SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,即SKIPIF1<0可知SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以SKIPIF1<0;(ii)根據(jù)(1)可知:SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,可知SKIPIF1<0為等差數(shù)列,可得SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,綜上所述:SKIPIF1<0.20.設(shè)函數(shù)SKIPIF1<0.(1)求SKIPIF1<0圖象上點SKIPIF1<0處的切線方程;(2)若SKIPIF1<0在SKIPIF1<0時恒成立,求SKIPIF1<0的值;(3)若SKIPIF1<0,證明SKIPIF1<0.【答案】(1)SKIPIF1<0(2)2(3)見解析【分析】(1)直接使用導(dǎo)數(shù)的幾何意義;(2)先由題設(shè)條件得到SKIPIF1<0,再證明SKIPIF1<0時條件滿足;(3)先確定SKIPIF1<0的單調(diào)性,再對SKIPIF1<0分類討論.【詳解】(1)由于SKIPIF1<0,故SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,所以所求的切線經(jīng)過SKIPIF1<0,且斜率為SKIPIF1<0,故其方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0,從而當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論