四川省成都市青羊區(qū)部分學校2022-2023學年數(shù)學九年級第一學期期末教學質量檢測模擬試題含解析_第1頁
四川省成都市青羊區(qū)部分學校2022-2023學年數(shù)學九年級第一學期期末教學質量檢測模擬試題含解析_第2頁
四川省成都市青羊區(qū)部分學校2022-2023學年數(shù)學九年級第一學期期末教學質量檢測模擬試題含解析_第3頁
四川省成都市青羊區(qū)部分學校2022-2023學年數(shù)學九年級第一學期期末教學質量檢測模擬試題含解析_第4頁
四川省成都市青羊區(qū)部分學校2022-2023學年數(shù)學九年級第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,菱形的邊長是,動點同時從點出發(fā),以的速度分別沿運動,設運動時間為,四邊形的面積為,則與的函數(shù)關系圖象大致為()A. B.C. D.2.要制作兩個形狀相同的三角形框架,其中一個三角形的三邊長分別為5,6,9,另一個三角形的最長邊長為4.5,則它的最短邊長是()A. B. C. D.3.在同一坐標系內,一次函數(shù)與二次函數(shù)的圖象可能是A. B. C. D.4.兩個相似三角形的面積比是9:16,則這兩個三角形的相似比是()A.9︰16 B.3︰4 C.9︰4 D.3︰165.公元三世紀,我國漢代數(shù)學家趙爽在注解《周髀算經》時給出的“趙爽弦圖”如圖所示,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形.如果大正方形的面積是125,小正方形面積是25,則()A. B. C. D.6.不等式的解集是()A. B. C. D.7.在日本核電站事故期間,我國某監(jiān)測點監(jiān)測到極微量的人工放射性核素碘一,其濃度為貝克/立方米,數(shù)據用科學記數(shù)法可表示為()A. B. C. D.8.關于拋物線,下列說法錯誤的是()A.開口向上 B.與x軸有唯一交點C.對稱軸是直線 D.當時,y隨x的增大而減小9.下列事件中,是必然事件的是()A.隨意翻倒一本書的某頁,這頁的頁碼是奇數(shù). B.通常溫度降到以下,純凈的水結冰.C.從地面發(fā)射一枚導彈,未擊中空中目標. D.購買1張彩票,中獎.10.方程x2+2x-5=0經過配方后,其結果正確的是A. B.C. D.二、填空題(每小題3分,共24分)11.在一只不透明的袋中,裝著標有數(shù)字,,,的質地、大小均相同的小球.小明和小東同時從袋中隨機各摸出個球,并計算這兩球上的數(shù)字之和,當和小于時小明獲勝,反之小東獲勝.則小東獲勝的概率_______.12.已知拋物線,過點(0,2),則c=__________.13.小明家的客廳有一張直徑為1.2米,高0.8米的圓桌BC,在距地面2米的A處有一盞燈,圓桌的影子為DE,依據題意建立平面直角坐標系,其中D點坐標為(2,0),則點E的坐標是_____.14.如圖,有一菱形紙片ABCD,∠A=60°,將該菱形紙片折疊,使點A恰好與CD的中點E重合,折痕為FG,點F、G分別在邊AB、AD上,聯(lián)結EF,那么cos∠EFB的值為____.15.如圖,正方形ABEF與正方形BCDE有一邊重合,那么正方形BCDE可以看成是由正方形ABEF繞點O旋轉得到的,則圖中點O的位置為_____.16.如圖所示的點陣中,相鄰的四個點構成正方形,小球只在矩形內自由滾動時,則小球停留在陰影區(qū)域的概率為___________.17.若分式的值為0,則x的值為_______.18.如圖,AB是⊙O的直徑,且AB=4,點C是半圓AB上一動點(不與A,B重合),CD平分∠ACB交⊙O于點D,點I是△ABC的內心,連接BD.下列結論:①點D的位置隨著動點C位置的變化而變化;②ID=BD;③OI的最小值為;④ACBC=CD.其中正確的是_____________.(把你認為正確結論的序號都填上)三、解答題(共66分)19.(10分)如圖,在平行四邊形中,連接對角線,延長至點,使,連接,分別交,于點,.(1)求證:;(2)若,求的長.20.(6分)如圖,是線段上--動點,以為直徑作半圓,過點作交半圓于點,連接.已知,設兩點間的距離為,的面積為.(當點與點或點重合時,的值為)請根據學習函數(shù)的經驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行探究.(注:本題所有數(shù)值均保留一位小數(shù))通過畫圖、測量、計算,得到了與的幾組值,如下表:補全表格中的數(shù)值:;;.根據表中數(shù)值,繼續(xù)描出中剩余的三個點,畫出該函數(shù)的圖象并寫出這個函數(shù)的一條性質;結合函數(shù)圖象,直接寫出當?shù)拿娣e等于時,的長度約為____.21.(6分)如圖,一次函數(shù)和反比例函數(shù)的圖象相交于兩點,點的橫坐標為1.(1)求的值及,兩點的坐標(1)當時,求的取值范圍.22.(8分)某學校為了美化校園環(huán)境,向園林公司購買一批樹苗.公司規(guī)定:若購買樹苗不超過60棵,則每棵樹售價120元;若購買樹苗超過60棵,則每增加1棵,每棵樹售價均降低0.5元,且每棵樹苗的售價降到100元后,不管購買多少棵樹苗,每棵售價均為100元.(1)若該學校購買50棵樹苗,求這所學校需向園林公司支付的樹苗款;(2)若該學校向園林公司支付樹苗款8800元,求這所學校購買了多少棵樹苗.23.(8分)如圖,在矩形ABCD中,AB=6,BC=13,BE=4,點F從點B出發(fā),在折線段BA﹣AD上運動,連接EF,當EF⊥BC時停止運動,過點E作EG⊥EF,交矩形的邊于點G,連接FG.設點F運動的路程為x,△EFG的面積為S.(1)當點F與點A重合時,點G恰好到達點D,此時x=,當EF⊥BC時,x=;(2)求S關于x的函數(shù)解析式,并直接寫出自變量x的取值范圍;(3)當S=15時,求此時x的值.24.(8分)如圖,一塊矩形小花園長為20米,寬為18米,主人設計了橫縱方向的等寬小道路(圖中陰影部分),道路之外種植花草,為了使種植花草的面積達到總面積的80%,求道路的寬度.25.(10分)如圖,?ABD內接于半徑為5的⊙O,連結AO并延長交BD于點M,交圓⊙O于點C,過點A作AE//BD,交CD的延長線于點E,AB=AM.(1)求證:?ABM∽?ECA.(2)當CM=4OM時,求BM的長.(3)當CM=kOM時,設?ADE的面積為,?MCD的面積為,求的值(用含k的代數(shù)式表示).26.(10分)如圖①,是平行四邊形的邊上的一點,且,交于點.(1)若,求的長;(2)如圖②,若延長和交于點,,能否求出的長?若能,求出的長;若不能,說明理由.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據題意可以求出各段對應的函數(shù)解析式,再根據函數(shù)解析式即可判斷哪個選項是符合題意的,本題得以解決.【詳解】解:∵菱形ABCD的邊長為4cm,∠A=60°,動點P,Q同時從點A出發(fā),都以1cms的速度分別沿A→B→C和A→D→C的路徑向點C運動,

∴△ABD是等邊三角形,

∴當0<x≤4時,

y=×4×4×sin60°?x?sin60°x=4?x2=x2+4;

當4<x≤8時,

y=×4×4×sin60°?×(8?x)×(8?x)×sin60°=?x2+4x?12=?(x?8)2+4;∴選項C中函數(shù)圖像符合題意,故選:C.【點睛】本題考查動點問題的函數(shù)圖象,解答本題的關鍵是明確題意,求出各段對應的函數(shù)解析式,利用數(shù)形結合的思想解答.2、B【分析】根據題意可得出兩個三角形相似,利用最長邊數(shù)值可求出相似比,再用三角形的最短邊乘以相似比即可.【詳解】解:由題意可得出:兩個三角形的相似比為:,所以另一個三角形最短邊長為:.故選:B.【點睛】本題考查的知識點是相似三角形的相似比,根據題目求出兩個三角形的相似比是解此題的關鍵.3、C【分析】x=0,求出兩個函數(shù)圖象在y軸上相交于同一點,再根據拋物線開口方向向上確定出a>0,然后確定出一次函數(shù)圖象經過第一三象限,從而得解.【詳解】x=0時,兩個函數(shù)的函數(shù)值y=b,

所以,兩個函數(shù)圖象與y軸相交于同一點,故B、D選項錯誤;

由A、C選項可知,拋物線開口方向向上,

所以,a>0,

所以,一次函數(shù)y=ax+b經過第一三象限,

所以,A選項錯誤,C選項正確.

故選C.4、B【解析】試題分析:根據相似三角形中,面積比等于相似比的平方,即可得到結果.因為面積比是9:16,則相似比是3︰4,故選B.考點:本題主要考查了相似三角形的性質點評:解答本題的關鍵是掌握相似三角形面積的比等于相似比的平方5、A【分析】根據正方形的面積公式可得大正方形的邊長為,小正方形的邊長為5,再根據直角三角形的邊角關系列式即可求解.【詳解】解:∵大正方形的面積是125,小正方形面積是25,∴大正方形的邊長為,小正方形的邊長為5,∴,∴,∴.故選A.【點睛】本題考查了解直角三角形、勾股定理的證明和正方形的面積,難度適中,解題的關鍵是正確得出.6、C【解析】移項、合并同類項,系數(shù)化為1即可求解.【詳解】解:,故選:C.【點睛】考查了解簡單不等式的能力,解答這類題學生往往在解題時不注意移項要改變符號這一點而出錯.7、A【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】0.0000963,這個數(shù)據用科學記數(shù)法可表示為9.63×.

故選:A.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.8、D【分析】先把拋物線化為頂點式,再根據拋物線的性質即可判斷A、C、D三項,令y=0,解關于x的方程即可判斷B項,進而可得答案.【詳解】解:;A、∵a=1>0,∴拋物線的開口向上,說法正確,所以本選項不符合題意;B、令y=0,則,該方程有兩個相等的實數(shù)根,所以拋物線與x軸有唯一交點,說法正確,所以本選項不符合題意;C、拋物線的對稱軸是直線,說法正確,所以本選項不符合題意;D、當時,y隨x的增大而減小,說法錯誤,應該是當時,y隨x的增大而增大,所以本選項符合題意.故選:D.【點睛】本題考查了二次函數(shù)的性質和拋物線與x軸的交點問題,屬于基本題型,熟練掌握拋物線的性質是解題關鍵.9、B【分析】根據必然事件的定義判斷即可.【詳解】A、C、D為隨機事件,B為必然事件.故選B.【點睛】本題考查隨機事件與必然事件的判斷,關鍵在于熟記概念.10、C【詳解】解:根據配方法的意義,可知在方程的兩邊同時加減一次項系數(shù)的一半的平方,可知,即,配方為.故選:C.【點睛】此題主要考查了配方法,解題關鍵是明確一次項的系數(shù),然后在方程的兩邊同時加減一次項系數(shù)的一半的平方,即可求解.二、填空題(每小題3分,共24分)11、【分析】根據題意畫出樹狀圖,再根據概率公式即可得出答案.【詳解】根據題意畫圖如下:可以看出所有可能結果共有12種,其中數(shù)字之和大于等于9的有8種∴P(小東獲勝)==故答案為:.【點睛】此題主要考查概率公式的應用,解題的關鍵是根據題意畫出樹狀圖表示所有情況.12、2【分析】將點(0,2)代入原解析式解出c的值即可.【詳解】∵拋物線,過點(0,2),∴,∴c=2,故答案為:2.【點睛】本題主要考查了拋物線的性質,熟練掌握相關概念是解題關鍵.13、(4,0)【解析】根據相似三角形的判定和性質即可得到結論.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【點睛】本題考查了中心投影,相似三角形的判定和性質,正確的識別圖形是解題的關鍵.14、【分析】連接BE,由菱形和折疊的性質,得到AF=EF,∠C=∠A=60°,由cos∠C=,,得到△BCE是直角三角形,則,則△BEF也是直角三角形,設菱形的邊長為,則EF=,,由勾股定理,求出FB=,則,即可得到cos∠EFB的值.【詳解】解:如圖,連接BE,∵四邊形ABCD是菱形,∴AB=BC=CD,∠C=∠A=60°,AB∥DC,由折疊的性質,得AF=EF,則EF=ABFB,∵cos∠C=,∵點E是CD的中線,∴,∴,∴△BCE是直角三角形,即BE⊥CD,∴BE⊥AB,即△BEF是直角三角形.設BC=m,則BE=,在Rt△BEF中,EF=,由勾股定理,得:,∴,解得:,則,∴;故答案為:.【點睛】本題考查了解直角三角形,特殊角的三角函數(shù)值,菱形的性質,折疊的性質,以及勾股定理的運用,解題的關鍵是正確作出輔助線,構造直角三角形,從而利用解直角三角形進行解題.15、點B或點E或線段BE的中點.【分析】由旋轉的性質分情況討論可求解;【詳解】解:∵正方形BCDE可以看成是由正方形ABEF繞點O旋轉得到的,∴若點A與點E是對稱點,則點B是旋轉中心是點B;若點A與點D是對稱點,則點B是旋轉中心是BE的中點;若點A與點E是對稱點,則點B是旋轉中心是點E;故答案為:點B或點E或線段BE的中點.【點睛】本題考查了旋轉的性質,正方形的性質,利用分類討論是本題的關鍵.16、【分析】分別求出矩形ABCD的面積和陰影部分的面積即可確定概率.【詳解】設每相鄰兩個點之間的距離為a則矩形ABCD的面積為而利用梯形的面積公式和圖形的對稱性可知陰影部分的面積為∴小球停留在陰影區(qū)域的概率為故答案為【點睛】本題主要考查隨機事件的概率,能夠求出陰影部分的面積是解題的關鍵.17、-1【分析】根據分式的值為零的條件可以求出x的值.【詳解】解:根據題意得:,解得:x=-1.

故答案為:-1.【點睛】若分式的值為零,需同時具備兩個條件:(1)分子為2;(2)分母不為2.這兩個條件缺一不可.18、②④【分析】①在同圓或等圓中,根據圓周角相等,則弧相等可作判斷;②連接IB,根據點I是△ABC的內心,得到,可以證得,即有,可以判斷②正確;③當OI最小時,經過圓心O,作,根據等腰直角三角形的性質和勾股定理,可求出,可判斷③錯誤;④用反證法證明即可.【詳解】解:平分,AB是⊙O的直徑,,,是的直徑,是半圓的中點,即點是定點;故①錯誤;如圖示,連接IB,∵點I是△ABC的內心,∴又∵,∴即有∴,故②正確;如圖示,當OI最小時,經過圓心O,過I點,作,交于點∵點I是△ABC的內心,經過圓心O,∴,∵∴是等腰直角三角形,又∵,∴,設,則,,∴,解之得:,即:,故③錯誤;假設,∵點C是半圓AB上一動點,則點C在半圓AB上對于任意位置上都滿足,如圖示,當經過圓心O時,,,∴與假設矛盾,故假設不成立,∴故④正確;綜上所述,正確的是②④,故答案是:②④【點睛】此題考查了三角形的內心的定義和性質,等腰直角三角形的判定與性質,三角形外接圓有關的性質,角平分線的定義等知識點,熟悉相關性質是解題的關鍵.三、解答題(共66分)19、(1)見解析;(1)1【分析】(1)由平行四邊形的性質,得,,進而得,,結合,即可得到結論;(2)易證,進而得,即可求解.【詳解】(1)四邊形是平行四邊形,,,,,又∵,,(ASA),;(1)四邊形是平行四邊形,,,,即,∴FG=1.【點睛】本題主要考查平行四邊形的性質和三角形全等的判定和性質以及相似三角形的判定和性質定理,掌握上述定理,是解題的關鍵.20、(1)3.1,9.3,7.3;(2)見解析;(3)或.【分析】D(1)如圖1,當x=1.5時,點C在C處,x=2.0時,點C在C1處,此時,D'C'=DC,則,同理可求b、c;(2)依據表格數(shù)據描點即可;(3)從圖象可以得出答案.【詳解】解:如圖當x=1.5時,點C在C處,x=2.0時,點C在C1處∴D'C'=DC∴同理可得:b=9.3,c=7.3∴(允許合理的誤差存在)如圖由函數(shù)圖像可知,當時,隨增大而增大,當時,隨增大而減小;當時,的最大值為.由函數(shù)圖像可知,或【點睛】本題考查的是二次函數(shù)綜合應用,確定未知點數(shù)據、再描點、準確畫出函數(shù)圖像是解答本題的關鍵.21、(1);(1)或【分析】(1)將x=1代入求得A(1,3),將A(1,3)代入求得,解方程組得到B點的坐標為(-6,-1);

(1)反比例函數(shù)與一次函數(shù)的交點坐標即可得到結論.【詳解】解:(1)將代入,得,∴.將代入,得,∴,∴,解得(舍去)或.將代入,得,∴.(1)由圖可知,當時,或.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,正確的理解題意是解題的關鍵.22、(1)這所學校需向園林公司支付的樹苗款為6000元;(2)這所中學購買了80棵樹苗.【分析】(1)由題意按照每棵120元進行計算;(2)設設購買了棵樹苗,根據單價×數(shù)量=總價列方程,求解.【詳解】解:(1)∵,∴(元),∴答:這所學校需向園林公司支付的樹苗款為6000元.(2)∵購買60棵樹苗時所需支付的樹苗款為元元,∴該中學購買的樹苗超過60棵.又∵,∴購買100棵樹苗時每棵樹苗的售價恰好降至100元.∵購買樹苗超過100棵后,每棵樹苗的售價仍為100元,此時所需支付的樹苗款超過10000元,而,∴該中學購買的樹苗不超過100棵.設購買了棵樹苗,依題意,得,化簡,得,解得(舍去),.答:這所中學購買了80棵樹苗.【點睛】本題考查一元二次方程的實際應用,理解題意弄清題目中的等量關系是本題的解題關鍵.23、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)當點F與點A重合時,x=AB=6;當EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;(2)分兩種情況:①當點F在AB上時,作GH⊥BC于H,則四邊形ABHG是矩形,證明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面積公式和三角形面積公式即可得出答案;②當點F在AD上時,作FM⊥BC于M,則FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面積公式和三角形面積公式即可得出答案;(3)當x2+9x+12=15時,當x2﹣21x+102=15時,分別解方程即可.【詳解】(1)當點F與點A重合時,x=AB=6;當EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;故答案為:6;10;(2)∵四邊形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分兩種情況:①當點F在AB上時,如圖1所示:作GH⊥BC于H,則四邊形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面積為S=梯形ABEG的面積﹣△EFB的面積﹣△AGF的面積=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②當點F在AD上時,如圖2所示:作FM⊥BC于M,則FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面積為S=梯形CDFE的面積﹣△CEG的面積﹣△DFG的面積=(9+19﹣x)×6﹣×9×

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論