版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等腰梯形 B.矩形 C.正三角形 D.平行四邊形2.已知二次函數(shù),當(dāng)時隨的增大而減小,且關(guān)于的分式方程的解是自然數(shù),則符合條件的整數(shù)的和是()A.3 B.4 C.6 D.83.已知方程的兩根為,則的值是()A.1 B.2 C.-2 D.44.在Rt△ABC中,∠C=90°,、、所對的邊分別為a、b、c,如果a=3b,那么∠A的余切值為()A. B.3 C. D.5.如圖,在平行四邊形中::若,則()A. B. C. D.6.如圖所示,AB∥CD,∠A=50°,∠C=27°,則∠AEC的大小應(yīng)為()A.23° B.70° C.77° D.80°7.下面是“育”“才”“水”“井"四個字的甲骨文,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.8.某單行道路的路口,只能直行或右轉(zhuǎn),任意一輛車通過路口時直行或右轉(zhuǎn)的概率相同.有3輛車通過路口.恰好有2輛車直行的概率是()A. B. C. D.9.一個由小菱形組成的裝飾鏈,斷去了一部分,剩下部分如圖所示,則斷去部分的小菱形的個數(shù)可能是()A.6個 B.7個 C.8個 D.9個10.如圖,AB切⊙O于點B,C為⊙O上一點,且OC⊥OA,CB與OA交于點D,若∠OCB=15°,AB=2,則⊙O的半徑為()A. B.2 C.3 D.4二、填空題(每小題3分,共24分)11.如圖,在邊長為2的正方形ABCD中,以點D為圓心,AD長為半徑畫,再以BC為直徑畫半圓,若陰影部分①的面積為S1,陰影部分②的面積為S2,則圖中S1﹣S2的值為_____.(結(jié)果保留π)12.如圖所示,已知中,,邊上的高,為上一點,,交于點,交于點,設(shè)點到邊的距離為.則的面積關(guān)于的函數(shù)圖象大致為__________.13.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長為_______.14.一張等腰三角形紙片,底邊長為15,底邊上的高為22.5,現(xiàn)沿底邊依次從下往上裁剪寬度均為3的矩形紙條,如圖,已知剪得的紙條中有一張是正方形(正方形),則這張正方形紙條是第________張.15.若△ABC∽△DEF,,且相似比為1:2,則△ABC與△DEF面積比_____________.16.如圖,在中,,若,則__________.17.一元二次方程x2﹣2x=0的解是.18.若一個正六邊形的周長為24,則該正六邊形的面積為▲.三、解答題(共66分)19.(10分)關(guān)于x的方程的解為正數(shù),且關(guān)于y的不等式組有解,求符合題意的整數(shù)m.20.(6分)解方程:x(x-2)+x-2=1.21.(6分)如圖,在?ABCD中過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.(1)求證:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的長.22.(8分)(1)計算:.(2)解方程:.23.(8分)已知在中,,,,為邊上的一點.過點作射線,分別交邊、于點、.(1)當(dāng)為的中點,且、時,如圖1,_______:(2)若為的中點,將繞點旋轉(zhuǎn)到圖2位置時,_______;(3)若改變點到圖3的位置,且時,求的值.24.(8分)如圖,BD是⊙O的直徑.弦AC垂直平分OD,垂足為E.(1)求∠DAC的度數(shù);(2)若AC=6,求BE的長.25.(10分)已知:在平面直角坐標(biāo)系中,拋物線()交x軸于A、B兩點,交y軸于點C,且對稱軸為直線x=-2.(1)求該拋物線的解析式及頂點D的坐標(biāo);(2)若點P(0,t)是y軸上的一個動點,請進(jìn)行如下探究:探究一:如圖1,設(shè)△PAD的面積為S,令W=t·S,當(dāng)0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;探究二:如圖2,是否存在以P、A、D為頂點的三角形與Rt△AOC相似?如果存在,求點P的坐標(biāo);如果不存在,請說明理由.26.(10分)某玩具商店以每件60元為成本購進(jìn)一批新型玩具,以每件100元的價格銷售則每天可賣出20件,為了擴大銷售,增加盈利,盡快減少庫存,商店決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):若每件玩具每降價1元,則每天可多賣2件.(1)若商店打算每天盈利1200元,每件玩具的售價應(yīng)定為多少元?(2)若商店為追求效益最大化,每件玩具的售價定為多少元時,商店每天盈利最多?最多盈利多少元?
參考答案一、選擇題(每小題3分,共30分)1、B【分析】中心對稱圖形的定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形;軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:等腰梯形、正三角形只是軸對稱圖形,矩形既是中心對稱圖形又是軸對稱圖形,平行四邊形只是中心對稱圖形,故選B【點睛】本題考查中心對稱圖形和軸對稱圖形,本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握中心對稱圖形和軸對稱圖形的定義,即可完成.2、A【分析】由二次函數(shù)的增減性可求得對稱軸,可求得a取值范圍,再求分式方程的解,進(jìn)行求解即可.【詳解】解:
∵y=-x2+(a-2)x+3,
∴拋物線對稱軸為x=,開口向下,
∵當(dāng)x>2時y隨著x的增大而減小,
∴≤2,解得a≤6,
解關(guān)于x的分式方程可得x=,且x≠3,則a≠5,
∵分式方程的解是自然數(shù),
∴a+1是2的倍數(shù)的自然數(shù),且a≠5,
∴符合條件的整數(shù)a為:-1、1、3,
∴符合條件的整數(shù)a的和為:-1+1+3=3,
故選:A.【點睛】此題考查二次函數(shù)的性質(zhì),由二次函數(shù)的性質(zhì)求得a的取值范圍是解題的關(guān)鍵.3、A【分析】先化成一元二次方程的一般形式,根據(jù)根與系數(shù)的關(guān)系得出x1+x2,x1?x2,代入求出即可.【詳解】∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,由根與系數(shù)的關(guān)系得:x1+x2,x1?x2,所以x1+x1x2+x2()=1.故選:A.【點睛】本題考查了根與系數(shù)的關(guān)系,能熟記根與系數(shù)的關(guān)系的內(nèi)容是解答本題的關(guān)鍵.4、A【分析】根據(jù)銳角三角函數(shù)的定義,直接得出cotA=,即可得出答案.【詳解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故選擇:A.【點睛】此題主要考查了銳角三角函數(shù)的定義,熟練地應(yīng)用銳角三角函數(shù)的定義是解決問題的關(guān)鍵.5、A【分析】先根據(jù)平行四邊形的性質(zhì)得到AB=CD,AB∥CD,再計算出AE:CD=1:3,接著證明△AEF∽△CDF,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】∵四邊形ABCD為平行四邊形,
∴AB=CD,AB∥CD,
∵,
∴,
∴,
∵AE∥CD,
∴,
∴,
∴.
故選:A.【點睛】本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形面積的比等于相似比的平方是解答此題的關(guān)鍵.6、C【分析】根據(jù)平行線的性質(zhì)可求解∠ABC的度數(shù),利用三角形的內(nèi)角和定理及平角的定義可求解.【詳解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故選:C.【點睛】本題主要考查平行線的性質(zhì),三角形的內(nèi)角和定理,掌握平行線的性質(zhì)是解題的關(guān)鍵.7、C【解析】根據(jù)中心對稱圖形與軸對稱圖形的區(qū)別判斷即可,軸對稱圖形一定要沿某直線折疊后直線兩旁的部分互相重合,關(guān)鍵抓兩點:一是沿某直線折疊,二是兩部分互相重合;中心對稱圖形是圖形繞某一點旋轉(zhuǎn)180°后與原來的圖形重合,關(guān)鍵也是抓兩點:一是繞某一點旋轉(zhuǎn),二是與原圖形重合.【詳解】解:A.不是中心對稱圖形也不是軸對稱圖形,不符合題意;B.是軸對稱圖形不是中心對稱圖形,不符合題意;C.是中心對稱圖形不是軸對稱圖形,符合題意;D.是軸對稱圖形也是中心對稱圖形,不符合題意;故答案為:C.【點睛】本題考查的知識點是軸對稱圖形與中心對稱圖形的判斷,熟記二者的區(qū)別是解題的關(guān)鍵.8、B【分析】用表示直行、表示右轉(zhuǎn),畫出樹狀圖表示出所有的種等可能的結(jié)果,其中恰好有輛車直行占種,然后根據(jù)概率公式求解即可.【詳解】解:若用表示直行、表示右轉(zhuǎn),則畫樹狀圖如下:∵共有種等可能的結(jié)果,其中恰好有輛車直行占種∴(恰好輛車直行).故選:B【點睛】此題考查的是用樹狀圖法求概率.注意樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合兩步或兩步以上完成的事件;注意概率等于所求情況數(shù)與總情況數(shù)之比.9、C【解析】觀察圖形,兩個斷開的水平菱形之間最小有2個豎的菱形,之后在此基礎(chǔ)上每增加一個也可完整,即可以是2、5、8、11……故選C.點睛:探索規(guī)律的題型最關(guān)鍵的是找準(zhǔn)規(guī)律.10、B【分析】連接OB,由切線的性質(zhì)可得∠OBA=90°,結(jié)合已知條件可求出∠A=30°,因為AB的長已知,所以⊙O的半徑可求出.【詳解】連接OB,∵AB切⊙O于點B,∴OB⊥AB,∴∠ABO=90°,∵OC⊥OA,∠OCB=15°,∴∠CDO=∠ADO=75°,∵OC=OB,∴∠C=∠OBD=15°,∴∠ABD=75°,∴∠ADB=∠ABD=75°,∴∠A=30°,∴BO=AO,∵AB=2,∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半徑為2,故選:B.【點睛】本題考查了切線的性質(zhì)、等腰三角形的判定和性質(zhì)以及勾股定理的運用,求出∠A=30°,是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、π【分析】如圖,設(shè)圖中③的面積為S1.構(gòu)建方程組即可解決問題.【詳解】解:如圖,設(shè)圖中③的面積為S1.由題意:,可得S1﹣S2=π,故答案為π.【點睛】本題考查扇形的面積、正方形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程組解決問題.12、拋物線y=-x2+6x.(0<x<6)的部分.【分析】可過點A向BC作AH⊥BC于點H,所以根據(jù)相似三角形的性質(zhì)可求出EF,進(jìn)而求出函數(shù)關(guān)系式,由此即可求出答案.【詳解】解:過點A向BC作AH⊥BC于點H,∵∴△AEF∽△ABC∴即,∴y=×2(6-x)x=-x2+6x.(0<x<6)∴該函數(shù)圖象是拋物線y=-x2+6x.(0<x<6)的部分.故答案為:拋物線y=-x2+6x.(0<x<6)的部分.【點睛】此題考查相似三角形的判定和性質(zhì),根據(jù)幾何圖形的性質(zhì)確定函數(shù)的圖象能力.要能根據(jù)函數(shù)解析式及其自變量的取值范圍分析得出所對應(yīng)的函數(shù)圖像的類型和所需要的條件,結(jié)合實際意義分析得解.13、8【解析】在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長.【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點睛】此題主要考查銳角三角函數(shù)在直角三形中的應(yīng)用及勾股定理.14、6【分析】設(shè)第x張為正方形紙條,由已知可知,根據(jù)相似三角形的性質(zhì)有,從而可計算出x的值.【詳解】如圖,設(shè)第x張為正方形紙條,則∵∴∴即解得故答案為6【點睛】本題主要考查相似三角形的性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.15、1:1【分析】由題意直接根據(jù)相似三角形面積的比等于相似比的平方進(jìn)行求值即可.【詳解】解:∵△ABC∽△DEF,且△ABC與△DEF的相似比為1:2,∴△ABC與△DEF的面積比為1:1,故答案為:1:1.【點睛】本題考查的是相似三角形的性質(zhì),熟練掌握相似三角形面積的比等于相似比的平方是解題的關(guān)鍵.16、6【分析】先根據(jù)平行四邊形的性質(zhì)證得△BEG∽△FAG,從而可得相似比,然后根據(jù)同高的兩個三角形的面積等于底邊之比可求得,根據(jù)相似三角形的性質(zhì)可求得,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案為:6.【點睛】本題考查了平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì)以及三角形的面積等知識,屬于??碱}型,熟練掌握平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.17、【分析】方程整理后,利用因式分解法求出解即可.【詳解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故答案為x1=0,x1=1.18、【解析】根據(jù)題意畫出圖形,如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°.∵OB=OC,∴△OBC是等邊三角形.∴∠OBC=60°.∵正六邊形ABCDEF的周長為21,∴BC=21÷6=1.∴OB=BC=1,∴BM=OB·sin∠OBC=1·.∴.三、解答題(共66分)19、m的值是-1或1或2或3或4或5【分析】根據(jù)題意先求出方程的解與不等式組的解集,再根據(jù)題目中的要求,求出相應(yīng)的m的值即可.【詳解】解:解分式方程得:∵x為正數(shù)解得由不等式組有解得:整數(shù)m的值是-1或1或2或3或4或5.【點睛】本題考查分式方程的解、一元一次不等式組的整數(shù)解,解題的關(guān)鍵是明確題意,找出所求問題需要的條件.20、.【分析】把方程中的x-2看作一個整體,利用因式分解法解此方程.【詳解】解:(x-2)(x+2)=2,∴x-2=2或x+2=2,∴x2=2,x2=-2.21、(1)證明見解析;(2).【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,證出∠C=∠AFB,即可得出結(jié)論;(2)由勾股定理求出BE,由三角函數(shù)求出AE,再由相似三角形的性質(zhì)求出AF的長.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=,在Rt△ADE中,AE=AD?sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.考點:相似三角形的判定與性質(zhì);平行四邊形的性質(zhì);解直角三角形.22、(1)5;(2)【分析】(1)按順序先分別進(jìn)行絕對值化簡,0次冪運算,代入特殊角的三角函數(shù)值,進(jìn)行立方根運算,然后再按運算順序進(jìn)行計算即可.(2)根據(jù)化簡方程,從而求得方程的解.【詳解】(1)(2)解得,【點睛】本題考查了實數(shù)的混合運算以及一元二次方程的解法,掌握實數(shù)的混合運算法則以及一元二次方程化簡運算方法是解題的關(guān)鍵.23、(1)2;(2)2;(3)【分析】(1)由為的中點,結(jié)合三角形的中位線的性質(zhì)得到從而可得答案;(2)如圖,過作于過作于結(jié)合(1)求解再證明利用相似三角形的性質(zhì)可得答案;(3)過點分別作于點,于點,證明,可得再證明,利用相似三角形的性質(zhì)求解同法求解從而可得答案.【詳解】解:(1)為的中點,故答案為:(2)如圖,過作于過作于由(1)同理可得:故答案為:(3)過點分別作于點,于點,∵,∴.∵,∴.∴.∴.∴.∵,,∴.∴∴.∵,∴.∵,∴.∴.同理可得:.∴.【點睛】本題考查的是矩形的性質(zhì),三角形中位線的判定與性質(zhì),相似三角形的判定與性質(zhì),掌握以上知識是解題的關(guān)鍵.24、(1)30°;(2)3【分析】(1)由題意證明△CDE≌△COE,從而得到△OCD是等邊三角形,然后利用同弧所對的圓周角等于圓心角的一半求解;(2)由垂徑定理求得AE=AC=3,然后利用30°角的正切值求得DE=,然后根據(jù)題意求得OD=2DE=2,直徑BD=2OD=4,從而使問題得解.【詳解】解:連接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等邊三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC垂直平分OD∴AE=AC=3又∵由(1)可知,在Rt△DAE中,∠DAC=30°∴,即∴DE=∵弦AC垂直平分OD∴OD=2DE=2∴直徑BD=2OD=4∴BE=BD-DE=4-=3【點睛】本題考查垂徑定理,全等三角形的判定和性質(zhì)及銳角三角函數(shù),掌握相關(guān)定理正確進(jìn)行推理判斷是本題的解題關(guān)鍵.25、(1),D(-2,4).(2)①當(dāng)t=3時,W有最大值,W最大值=1.②存在.只存在一點P(0,2)使Rt△ADP與Rt△AOC相似.【解析】(1)由拋物線的對稱軸求出a,就得到拋物線的表達(dá)式了;
(2)①下面探究問題一,由拋物線表達(dá)式找出A,B,C三點的坐標(biāo),作DM⊥y軸于M,再由面積關(guān)系:SPAD=S梯形OADM-SAOP-SDMP得到t的表達(dá)式,從而W用t表示出來,轉(zhuǎn)化為求最值問題.
②難度較大,運用分類討論思想,可以分三種情況:
(1)當(dāng)∠P1DA=90°時;(2)當(dāng)∠P2AD=90°時;(3)當(dāng)AP3D=90°時?!驹斀狻拷猓海?)∵拋物線y=ax2-x+3(a≠0)的對稱軸為直線x=-2.∴D(-2,4).(2)探究一:當(dāng)0<t<4時,W有最大值.
∵拋物線交x軸于A、B兩點,交y軸于點C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
當(dāng)0<t<4時,作DM⊥y軸于M,
則DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t
∴W=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版新型食用菌保健品區(qū)域總代銷售與售后服務(wù)合同3篇
- 二零二五年度環(huán)保節(jié)能產(chǎn)品推廣合同4篇
- 2025年陶瓷原料質(zhì)量檢測與認(rèn)證合同2篇
- 2025年度門禁系統(tǒng)設(shè)備租賃與運營維護(hù)協(xié)議4篇
- 二手車交易市場租賃合同范本2024年適用
- 二零二五年度辦公樓窗簾節(jié)能改造承包合同4篇
- 2025年度智慧停車場設(shè)計與運營服務(wù)合同4篇
- 2025年文化中心場地租賃合同終止及合作開發(fā)意向書3篇
- 天津市應(yīng)急保障2025年度專用車輛租賃合同2篇
- 二零二五年度土地承包經(jīng)營權(quán)轉(zhuǎn)讓合同流轉(zhuǎn)規(guī)范版
- 2024-2025學(xué)年山東省濰坊市高一上冊1月期末考試數(shù)學(xué)檢測試題(附解析)
- 江蘇省揚州市蔣王小學(xué)2023~2024年五年級上學(xué)期英語期末試卷(含答案無聽力原文無音頻)
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 決勝中層:中層管理者的九項修煉-記錄
- 幼兒園人民幣啟蒙教育方案
- 單位就業(yè)人員登記表
- 衛(wèi)生監(jiān)督協(xié)管-醫(yī)療機構(gòu)監(jiān)督
- 記錄片21世紀(jì)禁愛指南
- 腰椎間盤的診斷證明書
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)七 裂變傳播
- 單級倒立擺系統(tǒng)建模與控制器設(shè)計
評論
0/150
提交評論