版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Contents
Acknowledgments5
Keyfindingsandinsights7
Introduction13
GenerativeAI–newsystemswithalonghistory13
Motivationofthisreport16
1GenerativeAI:Themainconcepts19
Backgroundandhistoricalorigins19
Deeplearning20
Discriminativeversusgenerativetasks20
WhatGenAImodelsexist?22
WhatareGenAImodes?23
2GlobalpatentingandresearchinGenAI33
Globaldevelopment33
Toppatentowners35
Keylocationsofinventors40
Keyfilingjurisdictions43
3PatenttrendsinGenAImodels45
Globaldevelopment45
Toppatentowners46
Keylocationsofinventors49
4PatenttrendsinGenAImodes51
Globaldevelopment51
Toppatentowners52
Keylocationsofinventors55
ConnectionbetweenGenAImodelsandGenAImodes55
5PatenttrendsinGenAIapplications57
Globaltrends57
Toppatentowners59
Keylocationsofinventors62
Connectionbetweencoremodelsandapplications63
Connectionbetweenmodesandapplications65
3
Furtherconsiderations67
ConcernsabouttheuseofGenAI67
LimitationsandfutureofpatentanalysisinrelationtoGenAI69
Appendices71
A.1Methodologyforpatentanalysis71
A.2Patentindicators73
A.3Interdependencebetweenmodels,modesandapplications74
A.4Patentsearches77
A.5Prompts82
A.6ScientificpublicationquerywithTheLens86
A.7Miningsoftwareanddatasetmentionsinthenon-patent
literaturecorpus86
A.8Descriptions/examplepatentsforGenAIapplications87
References105
4
Acknowledgments
ThisPatentLandscapeReportonGenerativeArtificialIntelligencewaspreparedunderthe
stewardshipofMarcoAlemán(AssistantDirectorGeneral,IPandInnovationEcosystems
Sector)andunderthedirectionofAlejandroRocaCampa?a(SeniorDirector,IPforInnovators
Department)andAndrewCzajkowski(Director,TechnologyandInnovationSupportDivision),
andwasledbyChristopherHarrison(PatentAnalyticsManager,IPAnalyticsSection,TechnologyandInnovationSupportDivision)withthegenerousfinancialsupportbyFunds-In-TrustJapan
IndustrialPropertyGlobalprovidedbytheJapanPatentOffice.
ThereportwaspreparedbyaprojectteamledbyChristopherHarrisonandLakshmiSupriya
(PatentAnalyticsOfficer,IPAnalyticsSection,TechnologyandInnovationSupportDivision)
thatincludedKaiGramke,JochenSpuck,KlausJankandMichaelFreunek(allfromEconSight),PatriceLopez(science-miner)aswellasHongKan(PatentAnalyticsOfficer,IPAnalyticsSection,TechnologyandInnovationSupportDivision),AleksandrBelianovandCraigDsouza(former
YoungExperts,TechnologyandInnovationSupportDivision).
OurthanksalsogotoUlrikeTill(Director,IPandFrontierTechnologiesDivision)forreviewingthereportandprovidingvaluableinput.Finally,ourgratitudetotheWIPOeditorialanddesignteamledbyCharlotteBeauchamp(Head,PublicationsandDesignSection).
email:
ip.analytics@
5
Keyfindingsandinsights
ThereleaseofOpenAI’sChatGPTchatbotinNovember2022hasgreatlyincreasedpublic
enthusiasmforgenerativeAI(GenAI).Ithasbeendescribedbymany,includingNvidiaCEOJen-HsunHuang,asan“iPhonemoment”forGenAI.ThisisbecausetheOpenAIplatformhasmadeiteasierforalluserstoaccessadvancedGenAIprograms,particularlylargelanguagemodels(LLMs).Thesemodelshavereachednewlevelsofperformance,demonstratingthepotential
forvariousreal-worldapplications,triggeringawaveofresearchanddevelopment,andlargecorporateinvestmentsinGenAI.
ThisWIPOPatentLandscapeReportprovidesobservationsonpatentingactivityandscientificpublicationsinthefieldofGenAIandbuildsonthe2019WIPOTechnologyTrendspublicationonArtificialIntelligence.Itaimstoshedlightonthecurrenttechnologydevelopment,itschangingdynamicsandtheapplicationsinwhichGenAItechnologiesareexpectedtobeused.Italso
identifieskeyresearchcountries,companiesandorganizations.
significantlysince2017
GenAIpatentfamiliesandscientificpublicationshaveincreased
TheriseofGenAIoverthepastfewyearshasbeendrivenprimarilybythreefactors:more
powerfulcomputers,theavailabilityoflargedatasetsasasourceoftrainingdata,andimprovedAI/machinelearningalgorithms.DevelopmentssuchasthetransformerarchitectureinLLMs
havesignificantlyadvancedGenAI.Thishasmadeitpossibletodevelopcomplexapplicationsinmanydifferentfields.
ThetechnologicaladvancesinGenAIarereflectedbythesharpincreaseinpatentingactivity.Overthepast10years,thenumberofpatentfamiliesinGenAIhasgrownfromjustonly733in2014tomorethan14,000in2023.Sincetheintroductionofthetransformerin2017,thedeep
neuralnetworkarchitecturebehindtheLargeLanguageModelsthathavebecomesynonymouswithGenAI,thenumberofGenAIpatentshasincreasedbyover800%.Thenumberofscientificpublicationshasincreasedevenmoreoverthesameperiod,fromjust116in2014tomorethan34,000in2023.Over25%ofallGenAIpatentsandover45%ofallGenAIscientificpaperswerepublishedin2023alone.
7
8
GenAIpatentfamiliesGenAIscienti?cpublications
2014l 2015l 20162017201820192020202120222023
15,00010,00050000500010,00015,00020,00025,00030,00035,000
WhicharethetoporganizationswiththemostpatentsinGenAI?
1.Tencent
2.PingAnInsuranceGroup
3.Baidu
4.ChineseAcademyofSciences
5.IBM
Tencent,PingAnInsuranceGroupandBaiduownthemostGenAIpatents.TencentplanstoaddGenAIcapabilitiestoitsproductssuchasWeChattoimprovetheuserexperience.Ping
AnfocusesonGenAImodelsforunderwritingandriskassessment.BaiduwasoneoftheearlyplayersinGenAIandrecentlyunveileditslatestLLM-basedAIchatbot,ERNIE4.0.TheChineseAcademyofSciences(fourth)istheonlyresearchorganizationinthetop10ranking.Alibaba(sixth)andBytedance(ninth)areotherChinesecompaniesinthetop10.
PatentLandscapeReport–GenerativeArtificialIntelligence
IBM(fifth),Alphabet/Google(eighth)andMicrosoft(10th)arethetopUScompaniesintermsofGenAIpatents.IBMhasdevelopedaGenAIplatform,watsonx,whichenablescompaniestodeployandcustomizeLLMswithafocusondatasecurityandcompliance.Alphabet/Google'sAIdivisionDeepMindrecentlyreleaseditslatestLLMmodel,Gemini,whichisgraduallybeingintegratedintoAlphabet/Google'sproductsandservices.MicrosoftisanotherkeyplayerinGenAIandaninvestorinOpenAI.OpenAIitselfhasonlyrecentlyfileditsfirstGenAIpatents.Roundingoutthetop10iselectronicsconglomerateSamsungElectronics(seventh)fromtheRepublicofKorea.
CorporateUniversity/researchorganization
9
(US)
IBMMicrosoft
(US)
PingAn
Alb)etiiyInsurance
Adobe(China)Group
(US)(China)
Sony
()H(CuiChina
Mobile
(China)
Baidu(China)BBKN(Es
(China)Ele(cssuir
(Jn)(China)ByteDance
(China)
AlibabaGroup(China)
Chinese
Academy
ofSciences
(China)
TencentHoldings (China)
WhichinstitutionspublishedthemostscientificpublicationsonGenAI?
TheChineseAcademyofSciencesisclearlyintheleadintermsofscientificpublicationswithmorethan1,100publicationssince2010.TsinghuaUniversityandStanfordUniversityfollowinsecondandthirdplacewithmorethan600publicationseach.Alphabet/Google(fourth)istheonlycompanyinthetop20(556scientificpublications).
However,whenmeasuringtheimpactofscientificpublicationsbythenumberofcitations,
companiesdominate.Alphabet/Googleistheleadinginstitutionbyawidemargin,andsevenothercompaniesarepresentinthetop20.ThecaseofOpenAIisalsonoteworthy.InourGenAIcorpusofscientificpublications,thecompanyhaspublishedonly48articles(325thinstitutionintermsofnumberofpublications),butthesepublicationshavereceivedatotalof11,816citationsfromotherscientificpublications(13thoverall).
WherearethemostGenAItechnologiesinvented?
1.China
2.UnitedStates
3.RepublicofKorea
4.Japan
5.India
6.UnitedKingdom
Keyfindingsandinsights
7.Germany
InventorsbasedinChinawereresponsibleformorethan38,000patentfamiliesbetween
2014and2023,basedontheinventoraddressespublishedonpatents.Since2017,Chinahaspublishedmorepatentsinthisfieldeachyearthanallothercountriescombined.
PatentLandscapeReport–GenerativeArtificialIntelligence
10
Witharound6,300patentfamiliesbetween2014and2023,theUSisthesecondmostimportantresearchlocationforGenAIpatenting.TheAsiancountriesRepublicofKorea,JapanandIndia
areotherkeyresearchlocationsforGenAI,allrankinginthetop5countriesworldwide(third,fourthandfifthrespectively).TheUnitedKingdomistheleadingEuropeanlocation(sixth
globally),with714patentspublishedinthesameperiod.However,Germanyisclosebehind(708patentfamilies)andhaspublishedmoreGenAIpatentsthantheUKinrecentyears.Thesetopinventorlocationsaccountforthemajority(94%)ofglobalpatentingactivityrelatedtoGenAI.
China
US
RepublicofKorea
Japan
India
UK
Germany
Restofworld
Canada
Israel
France
WhichGenAImodelhasthemostpatents?
Inrecentyears,anumberofGenAIprograms,ormodels,havebeendeveloped.AmongthemostimportantGenAImodelsare:
1.generativeadversarialnetworks(GANs)
2.variationalautoencoders(VAEs)
3.decoder-basedlargelanguagemodels(LLMs)
However,notallGenAIpatentscanbeassignedtothesethreespecificcoremodelsbasedonavailableinformationfrompatentabstracts,claimsortitles.
AmongtheseGenAImodels,mostpatentsbelongtoGANs.Between2014and2023,therewere9,700patentfamiliesofthismodeltype,with2,400patentfamiliespublishedin2023alone.
VAEsandLLMsarethesecondandthirdlargestmodelsintermsofpatents,witharound1,800and1,300newpatentfamiliesrespectivelybetween2014and2023.
Intermsofpatentgrowth,GANpatentsshowthestrongestincreaseoverthepastdecade.
However,thishassloweddownrecently.Incontrast,diffusionmodelsandLLMsshowmuch
highergrowthratesoverthelastthreeyears,withthenumberofpatentfamiliesfordiffusionmodelsincreasingfrom18in2020to441in2023andforLLMsincreasingfrom53in2020to881in2023.TheGenAIboomcausedbymodernchatbotssuchasChatGPThasclearlyincreased
researchinterestinLLMs.
WhatarethemaintypesofdatausedinGenAIpatents?
ThemainGenAIdatatypesinclude:
–Image
–Video
–Speech
–Sound
–Music
AmongthedifferentGenAImodes,orthetypeofdatainputandoutput,mostpatentsbelongtotheimage/videocategory.Image/videodataisparticularlyimportantforGANs.Patents
involvingtheprocessingoftextandspeech/sound/musicarekeydatatypesforLLMs.The
remainingmodes:3Dimagemodels,chemicalmolecules/genes/proteinsandcode/software
havefarfewerpatentssofar.AswithpatentsrelatedtoGenAIcoremodels,somepatents
cannotbeclearlyassignedtoaspecificdatatype.Inaddition,somepatentsareassignedto
morethanonemodebecausecertainGenAImodels,suchasmultimodallargelanguagemodels(MLLMs),overcomethelimitationofusingonlyonetypeofdatainputoroutput.
TopapplicationareasofGenAIpatents
ThekeyapplicationareasforGenAIpatentsinclude:
1.Software
2.Lifesciences
3.Documentmanagementandpublishing
4.Businesssolutions
5.Industryandmanufacturing
6.Transportation
7.Security
8.Telecommunications
GenAIisboundtohaveasignificantimpactonmanyindustriesasitfindsitswayintoproducts,servicesandprocesses,becomingatechnologicalenablerforcontentcreationandproductivityimprovement.Forexample,therearemanyGenAIpatentsinlifesciences(5,346patent
familiesbetween2014and2023)anddocumentmanagementandpublishing(4,976).OthernotableapplicationswithGenAIpatentsrangingfromaround2,000toaround5,000overthesameperiodarebusinesssolutions,industryandmanufacturing,transportation,securityandtelecommunications.
Inthelifesciencessector,GenAIcanexpeditedrugdevelopmentbyscreeningand
designingmoleculesfornewdrugformulationsandpersonalizedmedicine.Indocument
managementandpublishing,GenAIcanautomatetasks,savetimeandmoney,andcreatetailoredmarketingmaterials.Inbusinesssolutions,GenAIcanbeusedforcustomerservicechatbots,retailassistancesystems,andemployeeknowledgeretrieval.Inindustryand
manufacturing,GenAIenablesnewfeatureslikeproductdesignoptimizationanddigitaltwinprogramming.Intransportation,GenAIplaysacrucialroleinautonomousdrivingandpublictransportationoptimization.
However,manypatentfamilies(around29,900patentfamiliesbetween2014and2023)cannotbeassignedtoaspecificapplicationbasedonthepatentabstract,claimsortitle.Thesepatentsareinsteadincludedinthecategorysoftware/otherapplications.
Keyfindingsandinsights
11
12
PatentLandscapeReport–GenerativeArtificialIntelligence
Introduction
GenerativeAI–newsystemswithalonghistory
Artificialintelligencetechnologieshaveseenadramaticincreaseinpublicandmediaattentioninrecentyears.However,AIisnotanewfieldofresearch.USandUKscientists–including
theoreticalmathematicianAlanTuring–werealreadyworkingonmachinelearninginthe
1930sand1940s,althoughthetermAIdidnotbecomepopularuntilthe1950s(McCarthyetal.2006).1The1950sand1960ssawasurgeofinterestinmanyAIareasincludingnaturallanguageprocessing,machinelearningandrobotics.Somescientistsatthetimepredictedthatamachineasintelligentasahumanwouldexistwithinageneration(Minsky1967).Thesepredictions
provedtobeoverlyoptimistic.Progressstagnatedbecauseofthelimitationsofcomputingpowerandalgorithmicapproachesavailableatthetime.Asaresult,researchfundingdriedup,whichledtothefirst“AIwinter”inthe1970s.Inthefollowingdecades,periodsofhighAIresearchintensityalternatedwithperiodsofloweractivity.
Foralongtime,AIalgorithmsandsoftwareweredevelopedforspecificpurposes,basedon
clearrulesoflogicandparametersspecifiedbyprogrammers.Evennow,manyAIapplicationsrelyonrule-baseddecisions:ifthis,thenthat.Forexample,virtualassistants(Siri,Alexa,etc.)areessentiallycommand-and-controlsystems.Theyonlyunderstandalimitedlistofquestionsandrequestsandfailtoadapttonewsituations.Theycannotapplytheir“knowledge”tonewproblemsordealwithuncertainty.
AIinthe21stcentury
ThemodernAIboomstartedatthebeginningofthe21stcenturyandhasbeenonanupward
trajectoryeversince.Today,AIandmachinelearningisusedincountlessapplications,includingsearchengines,recommendationsystems,targetedadvertising,virtualassistants,autonomousvehicles,automaticlanguagetranslation,facialrecognitionandmanymore.TheriseofAIhasbeendrivenmainlybythefollowingfactors:
–Morepowerfulcomputers:In1965,GordonMooreobservedthatthenumberoftransistorsoncomputerchipsdoublesapproximatelyeverytwoyearsandpredictedthatthiswould
continueforanother10years(Moore1965).Hislawhasheldtrueformorethanhalfa
century.ThisexponentialgrowthtranslatedintomoreandmorepowerfulAIsystems,oftenwithAI-specificenhancements.
–Bigdata:Second,theavailabilityofdatahasincreasedsimilarlyexponentially.ThishasprovidedapowerfulsourceoftrainingdataforAIalgorithmsandhasmadeitpossibletotrainmodelswithbillionsofimagesorahundredbilliontokens2oftext.
–BetterAI/machinelearningalgorithms:NewmethodsthatallowAIsystemstobetterusedataandalgorithmstolearnthewayhumansdo,suchasdeeplearning,haveenabled
breakthroughsinareassuchasimagerecognitionornaturallanguageprocessing
(WIPO2019).
1Theterm“ArtificialIntelligence”hasbeenvastlyinfluencedbyJohnMcCarthyatDartmouth,whoco-organizedwithMarvinMinskytheDartmouthSummerResearchProjectonArtificialIntelligencein1956.
13
2Tokensarecommonsequencesofcharactersfoundinasetoftext.Tokenizationbreakstextintosmallerpartsforeasiermachineanalysis,helpingAImodelsunderstandhumanlanguage.
PatentLandscapeReport–GenerativeArtificialIntelligence
14
Learningwithexamplesratherthanrules
TheheartofmodernAIismachinelearning,whencomputersystemslearnwithoutbeing
specificallyprogrammedtodoso.ModernAImodelsarefedwithexamplesofinputdata
andthedesiredoutcome,allowingthemtobuildmodelsorprogramsthatcanbeappliedto
entirelynewdata.Machinelearningexcelsathandlingmassivedatasetsanduncoveringhiddenpatternswithinthem.
Apowerfulapproachwithinmachinelearningiscalleddeeplearning.Itleveragescomplex
structurescalledartificialneuralnetworks,looselymodeledafterthehumanbrain.These
networksidentifypatternswithindatasets.Themoredatatheyhaveaccessto,thebettertheylearnandperform.Informationflowsthroughnumerouslayersofinterconnectedneurons,
whereitisprocessedandevaluated.Eachlayerrefinestheinformation,connectingand
weightingitthroughnodes.Essentially,AIlearnsbycontinuouslyreassessingitsknowledge,
formingnewconnectionsandprioritizinginformationbasedonnewdataitencounters.
Thetermdeeplearningreferstothevastnumberoflayersthesenetworkscanutilize.Deep
learning-poweredAIhasachievedremarkableadvancements,especiallyinareaslikeimage
andspeechrecognition.However,itssuccesscomeswithadrawback.Whiletheaccuracyoftheresultsisimpressive,thedecision-makingprocessremainsunclear,eventoAIexperts.Thislackoftransparencyisacontrasttoolderrule-basedsystems.
ModerngenerativeAI(GenAI):thenextlevelofAI
GenerativeAI(GenAI)hasbeenanactiveareaofresearchforalongtime.JosephWeizenbaumdevelopedtheveryfirstchatbot,ELIZA,inthe1960s(Weizenbaum1966).However,GenAIasweknowittodaywasheraldedbytheadventofdeeplearningbasedonneuralnetworks.
Today,GenAIisoneofthemostpowerfulexamplesofmachinelearning.Comparedtoold
rule-basedAIapplicationsthatcouldonlyperformasingletask,modernGenAImodelsare
trainedondatafrommanydifferentareas,withoutanylimitationsintermsoftask.Because
theamountoftrainingdataissolarge–OpenAI’sGPT-3wastrainedonmorethan45terabytesofcompressedtextdata(Brownetal.2020)–themodelsappeartobecreativeinproducing
outputs.Forexample,traditionalchatbotsfollowscriptedresponsesandrelyonpre-definedrulestointeractwithusers,makingthemsuitableonlyforspecifictasks.Incontrast,modernGenAIchatbotssuchasChatGPTorGoogleGeminicangeneratehuman-liketext,allowingforconversationsthatcanadapttomanytopicswithoutbeingconfinedtoapredeterminedscript.Inaddition,thesemodernchatbotscanproducenotonlytext,butalsoimages,musicand
computercodebasedonthedatasetonwhichtheyweretrained.
ThereleaseofChatGPTin2022wasaniPhonemomentforGenAI
InNovember2022,OpenAIreleasedChatGPT(ChatGenerativePre-trainedTransformer)to
thepublic,whichgreatlyincreasedpublicenthusiasmforGenAI.MorethanonemillionpeoplesigneduptouseChatGPTinjustfivedays.A2023surveybyauditingandconsultingfirm
Deloittefoundthatnearly61%ofrespondentsinSwitzerlandwhoworkwithacomputeralreadyuseChatGPTorotherGenAIprogramsintheirdailywork(Deloitte2023).TheChatGPTreleasehasbeendescribedbymany,includingNvidiaCEOJen-HsunHuang,asan“iPhonemoment”forGenAI(VentureBeat2023).ThisispartlybecausetheplatformmadeiteasierforuserstoaccessadvancedGenAImodels,specificallydecoder-basedlargelanguagemodels.3Thesemodels
havedemonstratedthepotentialformanyreal-worldapplicationsandhavesparkedawaveofresearchanddevelopment.ManycompaniesareheavilyinvestinginGenAI,withthesenewermodelsreachinganewdimensionofcapabilities.
3SeenextchapterforanoverviewanddescriptionofthedifferentmodernGenAImodels.
AbrieftimelineofGenAI15
1957?FrankRosenblattintroducestheperceptron,thefundamentalbuildingblockofneuralnetworks
(Rosenblatt1957)
1972
?
Amari-HopfieldNetworksmakerecurrentneuralnetworksabletolearn,asaformofassociativememory(Amari1972,Hopfield1982)
1997
?
LongShortTermMemory(LSTM)recurrentneuralnetworksarepublished,whichwillbecomeoneofthemostsuccessfuldeeplearningarchitecturesinthe2010s(HochreiterandSchmidhuber1997)
1990
?
MarkovnetworksandotherstatisticallanguagemodelsledtoeffectiveAIcommercialsystems,suchasthefirstversionsofGoogleTranslate
2013
?
VariationalAutoencoders(VAEs),anAuto-encoderapproachabletogeneratenewrealisticimagesamplesfrominputimages(KingmaandWelling2013)
2014
?
GenerativeAdversarialNetworksaredescribed,whichwillleadtovariousgenerativeapplicationsaroundphotorealisticimages
2016
?
WaveNetbyDeepMind,anoveldeepneuralnetworkapproachforrealistichumanspeech(vandenOordetal.2016)
2017
?
AteamfromGoogleResearchintroducesthetransformer,thedeepneuralnetworkarchitecturebehindtheLargeLanguageModels(Vaswanietal.2017).
2018
?
GPT,thefirstgenerativelanguagemodelofOpenAI,atransformerof120millionparameters(OpenAI2018)
2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新能源汽車租賃與政府補(bǔ)貼申請(qǐng)服務(wù)合同3篇
- 2025年度房地產(chǎn)經(jīng)紀(jì)個(gè)人勞務(wù)用工合同范本2篇
- 2025年水電工程信息化建設(shè)與維護(hù)承包合同范本3篇
- 2025年度個(gè)人果園果樹修剪與病蟲害防治一體化服務(wù)合同4篇
- 工廠轉(zhuǎn)讓協(xié)議書(2篇)
- 二零二五版城市更新改造項(xiàng)目融資合同范本4篇
- 2025年度個(gè)人抵押貸款擔(dān)保合同4篇
- 二零二五年房產(chǎn)交易市場(chǎng)參展商合作保障協(xié)議3篇
- 《建設(shè)工程施工合同糾紛事實(shí)查明的思路與方法》理解與適用
- 2025年行政管理制度范本:教育機(jī)構(gòu)管理規(guī)范3篇
- 2024版塑料購(gòu)銷合同范本買賣
- JJF 2184-2025電子計(jì)價(jià)秤型式評(píng)價(jià)大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 2025屆山東省德州市物理高三第一學(xué)期期末調(diào)研模擬試題含解析
- 2024年滬教版一年級(jí)上學(xué)期語(yǔ)文期末復(fù)習(xí)習(xí)題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學(xué)英語(yǔ)六年級(jí)下冊(cè)全冊(cè)教案
- 汽車噴漆勞務(wù)外包合同范本
- 2021年道路交通安全法期末考試試題含答案
- 自帶藥物治療告知書
- 建筑制圖與陰影透視-第3版-課件12
評(píng)論
0/150
提交評(píng)論