版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省長沙縣2024年中考五模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.52.如果一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形的邊數(shù)是()A.8 B.9 C.10 D.113.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.94.下列計(jì)算正確的是()A.(﹣2a)2=2a2 B.a(chǎn)6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a(chǎn)?a2=a25.如圖,夜晚,小亮從點(diǎn)A經(jīng)過路燈C的正下方沿直線走到點(diǎn)B,他的影長y隨他與點(diǎn)A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為()A. B.C. D.6.在下列實(shí)數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣17.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.8.如圖,將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°9.在⊙O中,已知半徑為5,弦AB的長為8,則圓心O到AB的距離為()A.3 B.4 C.5 D.610.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.11.的值是A.±3 B.3 C.9 D.8112.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機(jī)摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關(guān)于x的分式方程有增根,則m的值為_____.14.如圖,經(jīng)過點(diǎn)B(-2,0)的直線與直線相交于點(diǎn)A(-1,-2),則不等式的解集為.15.墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.如圖所示的數(shù)據(jù)是運(yùn)動員張華十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.則運(yùn)動員張華測試成績的眾數(shù)是_____.16.我國倡導(dǎo)的“一帶一路”建設(shè)將促進(jìn)我國與世界各國的互利合作,“一帶一路”地區(qū)覆蓋總?cè)丝诩s為4400000000人,將數(shù)據(jù)4400000000用科學(xué)記數(shù)法表示為______.17.如圖,線段AB的長為4,C為AB上一個動點(diǎn),分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形ACD和BCE,連結(jié)DE,則DE長的最小值是_____.18.已知a<0,那么|﹣2a|可化簡為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)有一水果店,從批發(fā)市場按4元/千克的價格購進(jìn)10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測,每天每千克價格上漲0.1元.設(shè)x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關(guān)系式;若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出y與x的函數(shù)關(guān)系式;該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?20.(6分)已知,求代數(shù)式的值.21.(6分)如圖,已知二次函數(shù)與x軸交于A、B兩點(diǎn),A在B左側(cè),點(diǎn)C是點(diǎn)A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點(diǎn)P從O出發(fā),以每秒2個單位的速度沿x軸負(fù)半軸方向運(yùn)動,Q從O出發(fā),以每秒個單位的速度沿OC方向運(yùn)動,運(yùn)動時間為t.直線PQ與拋物線的一個交點(diǎn)記為M,當(dāng)2PM=QM時,求t的值(直接寫出結(jié)果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(diǎn)(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF22.(8分)先化簡分式:(-)÷?,再從-3、-3、2、-2中選一個你喜歡的數(shù)作為的值代入求值.23.(8分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點(diǎn)處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達(dá)E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)24.(10分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個動點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積最大,若存在,求出點(diǎn)F的坐標(biāo)和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo).25.(10分)已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過點(diǎn)A(1,3).求此拋物線的表達(dá)式;如果點(diǎn)A關(guān)于該拋物線對稱軸的對稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.26.(12分)已知拋物線的開口向上頂點(diǎn)為P(1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時,拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值27.(12分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計(jì)算OC=和OD的長,可得BD的長;③因?yàn)椤螧AC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計(jì)算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.2、A【解析】分析:根據(jù)多邊形的內(nèi)角和公式及外角的特征計(jì)算.詳解:多邊形的外角和是360°,根據(jù)題意得:
110°?(n-2)=3×360°
解得n=1.
故選A.點(diǎn)睛:本題主要考查了多邊形內(nèi)角和公式及外角的特征.求多邊形的邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.3、B【解析】
作DF⊥CA,交CA的延長線于點(diǎn)F,作DG⊥CB于點(diǎn)G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點(diǎn)G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.4、C【解析】
解:選項(xiàng)A,原式=;選項(xiàng)B,原式=a3;選項(xiàng)C,原式=-2a+2=2-2a;選項(xiàng)D,原式=故選C5、A【解析】設(shè)身高GE=h,CF=l,AF=a,當(dāng)x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點(diǎn),進(jìn)而隨著離燈光的越來越遠(yuǎn)而影長將變大.故選A.6、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.7、A【解析】根據(jù)軸對稱圖形的概念求解.解:根據(jù)軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點(diǎn)睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.9、A【解析】解:作OC⊥AB于C,連結(jié)OA,如圖.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圓心O到AB的距離為2.故選A.10、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個部分,列出方程即可.11、C【解析】試題解析:∵∴的值是3故選C.12、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、±【解析】
增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.有增根,最簡公分母x-3=0,所以增根是x=3,把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘x-3,得x-2(x-3)=m2,∵原方程增根為x=3,∴把x=3代入整式方程,得m=±.【點(diǎn)睛】解決增根問題的步驟:①確定增根的值;②化分式方程為整式方程;③把增根代入整式方程即可求得相關(guān)字母的值.14、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.15、1【解析】
根據(jù)眾數(shù)定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)可得答案.【詳解】運(yùn)動員張華測試成績的眾數(shù)是1.故答案為1.【點(diǎn)睛】本題主要考查了眾數(shù),關(guān)鍵是掌握眾數(shù)定義.16、4.4×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】4400000000的小數(shù)點(diǎn)向左移動9位得到4.4,所以4400000000用科學(xué)記數(shù)法可表示為:4.4×1,故答案為4.4×1.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.17、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點(diǎn),分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點(diǎn):不等式的性質(zhì)點(diǎn)評:本題考查不等式的性質(zhì),會用勾股定理,完全平方公式,不等關(guān)系等知識,它們是解決本題的關(guān)鍵18、﹣3a【解析】
根據(jù)二次根式的性質(zhì)和絕對值的定義解答.【詳解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【點(diǎn)睛】本題主要考查了根據(jù)二次根式的意義化簡.二次根式規(guī)律總結(jié):當(dāng)a≥0時,=a;當(dāng)a≤0時,=﹣a.解題關(guān)鍵是要判斷絕對值符號和根號下代數(shù)式的正負(fù)再去掉符號.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【解析】
(1)根據(jù)按每千克元的市場價收購了這種蘋果千克,此后每天每千克蘋果價格會上漲元,進(jìn)而得出天后每千克蘋果的價格為元與的函數(shù)關(guān)系;(2)根據(jù)每千克售價乘以銷量等于銷售總金額,求出即可;(3)利用總售價-成本-費(fèi)用=利潤,進(jìn)而求出即可.【詳解】根據(jù)題意知,;.當(dāng)時,最大利潤12500元,答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【點(diǎn)睛】此題主要考查了二次函數(shù)的應(yīng)用以及二次函數(shù)最值求法,得出與的函數(shù)關(guān)系是解題關(guān)鍵.20、12【解析】解:∵,∴.∴.將代數(shù)式應(yīng)用完全平方公式和平方差公式展開后合并同類項(xiàng),將整體代入求值.21、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解析】
(1)把A(-3,0),B(-1,0)代入二次函數(shù)解析式即可求出;由AC=OA知C點(diǎn)坐標(biāo)為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計(jì)算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數(shù)解析式得解得∴y=-x2-4x-3;由AC=OA知C點(diǎn)坐標(biāo)為(-3,-3),∴直線OC的解析式y(tǒng)=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當(dāng)M(-3t,t)時:,∴當(dāng)M()時:,∴綜上:或(2)設(shè)A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設(shè)、,設(shè)EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF【點(diǎn)睛】此題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是熟知相似三角形的判定與性質(zhì)及正確作出輔助線進(jìn)行求解.22、;5【解析】
原式=(-)?=?=?=a=2,原式=523、35km【解析】試題分析:如圖作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解決問題.試題解析:如圖,作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E處距離港口A有35km.24、(1)、y=-+x+4;(2)、不存在,理由見解析.【解析】試題分析:(1)、首先設(shè)拋物線的解析式為一般式,將點(diǎn)C和點(diǎn)A意見對稱軸代入求出函數(shù)解析式;(2)、本題利用假設(shè)法來進(jìn)行證明,假設(shè)存在這樣的點(diǎn),然后設(shè)出點(diǎn)F的坐標(biāo)求出FH和FG的長度,然后得出面積與t的函數(shù)關(guān)系式,根據(jù)方程無解得出結(jié)論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點(diǎn)C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點(diǎn)A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設(shè)存在滿足條件的點(diǎn)F,如圖所示,連結(jié)BF、CF、OF,過點(diǎn)F作FH⊥x軸于點(diǎn)H,F(xiàn)G⊥y軸于點(diǎn)G.設(shè)點(diǎn)F的坐標(biāo)為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無解∴不存在滿足條件的點(diǎn)F考點(diǎn):二次函數(shù)的應(yīng)用25、(1)y=-(x-3)2+5(2)5【解析】
(1)設(shè)頂點(diǎn)式y(tǒng)=a(x-3)2+5,然后把A點(diǎn)坐標(biāo)代入求出a即可得到拋物線的解析式;
(2)利用拋物線的對稱性得到B(5,3),再確定出C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式求解.【詳解】(1)設(shè)此拋物線的表達(dá)式為y=a(x-3)2+5,將點(diǎn)A(1,3)的坐標(biāo)代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達(dá)式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點(diǎn)睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關(guān)鍵.26、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一件代發(fā)采購合同協(xié)議書范本
- 2025至2031年中國PP塑料薄膜行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國靜電容物/液位指示器數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國自行車單撐數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國竹炭面料數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國樓梯地毯數(shù)據(jù)監(jiān)測研究報(bào)告
- 幼兒園預(yù)防中毒措施
- 幼兒交通安全出行
- 2025年度混合料道路運(yùn)輸合同2篇
- 2濟(jì)南2024房屋出租合同(含物業(yè)服務(wù)協(xié)議)
- 植樹問題專項(xiàng)講義(五大類型+方法+練習(xí)+答案)六年級數(shù)學(xué)小升初總復(fù)習(xí)
- 非諾貝特酸膽堿緩釋膠囊-臨床用藥解讀
- 二年級上冊數(shù)學(xué)豎式計(jì)算300道帶答案
- 設(shè)備管理:設(shè)備管理的維護(hù)與保養(yǎng)
- 土特產(chǎn)行業(yè)現(xiàn)狀分析
- 組織學(xué)與胚胎學(xué)課程教學(xué)大綱
- 玻璃硝酸鉀加硬工藝
- 蘇教版五年級上冊數(shù)學(xué)簡便計(jì)算大全500題及答案
- 根軌跡分析基本概念
- 設(shè)立股權(quán)交易中心公司實(shí)施方案
- 珠海金灣區(qū)2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)達(dá)標(biāo)卷(含答案)
評論
0/150
提交評論