版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黃岡市重點中學2023-2024學年中考聯(lián)考數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將△ABC繞點C順時針旋轉(zhuǎn),點B的對應(yīng)點為點E,點A的對應(yīng)點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.2.已知代數(shù)式x+2y的值是5,則代數(shù)式2x+4y+1的值是()A.6
B.7C.11D.123.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣24.下列方程有實數(shù)根的是()A. B.C.x+2x?1=0 D.5.如圖,線段AB兩個端點的坐標分別為A(2,2)、B(3,1),以原點O為位似中心,在第一象限內(nèi)將線段AB擴大為原來的2倍后得到線段CD,則端點C的坐標分別為()A.(4,4) B.(3,3) C.(3,1) D.(4,1)6.如圖,點A所表示的數(shù)的絕對值是()A.3 B.﹣3 C. D.7.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.8.計算的結(jié)果是().A. B. C. D.9.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ10.汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m二、填空題(共7小題,每小題3分,滿分21分)11.PA、PB分別切⊙O于點A、B,∠PAB=60°,點C在⊙O上,則∠ACB的度數(shù)為_____.12.在△ABC中,∠BAC=45°,∠ACB=75°,分別以A、C為圓心,以大于AC的長為半徑畫弧,兩弧交于F、G作直線FG,分別交AB,AC于點D、E,若AC的長為4,則BC的長為_____.13.若代數(shù)式的值為零,則x=_____.14.若關(guān)于x的方程有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是______.15.點(1,–2)關(guān)于坐標原點O的對稱點坐標是_____.16.將一次函數(shù)的圖象平移,使其經(jīng)過點(2,3),則所得直線的函數(shù)解析式是______.17.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經(jīng)過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結(jié)果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時間x(時)的函數(shù)的圖象,請問當小明到達B地時,小亮距離A地_____千米.三、解答題(共7小題,滿分69分)18.(10分)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個一元二次方程的根.19.(5分)觀察下列各個等式的規(guī)律:第一個等式:=1,第二個等式:=2,第三個等式:=3…請用上述等式反映出的規(guī)律解決下列問題:直接寫出第四個等式;猜想第n個等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.20.(8分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.21.(10分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.22.(10分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍.設(shè)購進A型無人機x臺,總費用為y元.①求y與x的關(guān)系式;②購進A型、B型無人機各多少臺,才能使總費用最少?23.(12分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數(shù)的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?24.(14分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(2)的基礎(chǔ)上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關(guān)系;.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等.2、C【解析】
根據(jù)題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【點睛】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.3、D【解析】
根據(jù)二次函數(shù)頂點式的性質(zhì)解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數(shù)頂點式y(tǒng)=a(x-h)2+k的性質(zhì),對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質(zhì)是解題關(guān)鍵.4、C【解析】分析:根據(jù)方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數(shù)根,故本選項符合題意;D.解分式方程=,可得x=1,經(jīng)檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.5、A【解析】
利用位似圖形的性質(zhì)結(jié)合對應(yīng)點坐標與位似比的關(guān)系得出C點坐標.【詳解】∵以原點O為位似中心,在第一象限內(nèi)將線段AB擴大為原來的2倍后得到線段CD,∴A點與C點是對應(yīng)點,∵C點的對應(yīng)點A的坐標為(2,2),位似比為1:2,∴點C的坐標為:(4,4)故選A.【點睛】本題考查了位似變換,正確把握位似比與對應(yīng)點坐標的關(guān)系是解題關(guān)鍵.6、A【解析】
根據(jù)負數(shù)的絕對值是其相反數(shù)解答即可.【詳解】|-3|=3,故選A.【點睛】此題考查絕對值問題,關(guān)鍵是根據(jù)負數(shù)的絕對值是其相反數(shù)解答.7、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.8、D【解析】
根據(jù)同底數(shù)冪的乘除法運算進行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點睛】本題主要考查同底數(shù)冪的乘除運算,解題的關(guān)鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.9、C【解析】
根據(jù)三角形高線的定義即可解題.【詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關(guān)鍵.10、B【解析】
利用配方法求二次函數(shù)最值的方法解答即可.【詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【點睛】此題主要考查了利用配方法求最值的問題,根據(jù)已知得出頂點式是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、60°或120°.【解析】
連接OA、OB,根據(jù)切線的性質(zhì)得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內(nèi)角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內(nèi)接四邊形的性質(zhì),求出∠ACB的度數(shù)即可.【詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當C在D處時,∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.【點睛】本題考查的是切線的性質(zhì)定理,圓內(nèi)接四邊形的性質(zhì),是一道基礎(chǔ)題.12、【解析】
連接CD在根據(jù)垂直平分線的性質(zhì)可得到△ADC為等腰直角三角形,結(jié)合已知的即可得到∠BCD的大小,然后就可以解答出此題【詳解】解:連接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案為.【點睛】此題主要考查垂直平分線的性質(zhì),解題關(guān)鍵在于連接CD利用垂直平分線的性質(zhì)證明△ADC為等腰直角三角形13、3【解析】由題意得,=0,解得:x=3,經(jīng)檢驗的x=3是原方程的根.14、a>﹣.【解析】試題分析:已知關(guān)于x的方程2x2+x﹣a=0有兩個不相等的實數(shù)根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考點:根的判別式.15、(-1,2)【解析】
根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反可得答案.【詳解】A(1,-2)關(guān)于原點O的對稱點的坐標是(-1,2),
故答案為:(-1,2).【點睛】此題主要考查了關(guān)于原點對稱的點的坐標,關(guān)鍵是掌握點的坐標的變化規(guī)律.16、【解析】試題分析:解:設(shè)y=x+b,∴3=2+b,解得:b=1.∴函數(shù)解析式為:y=x+1.故答案為y=x+1.考點:一次函數(shù)點評:本題要注意利用一次函數(shù)的特點,求出未知數(shù)的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.17、1【解析】
根據(jù)題意設(shè)小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設(shè)小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于列出方程組.三、解答題(共7小題,滿分69分)18、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】試題分析:(1)直接將x=﹣1代入得出關(guān)于a,b的等式,進而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進而得出關(guān)于a,b,c的等式,進而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個相等的實數(shù)根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)當△ABC是等邊三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理為:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考點:一元二次方程的應(yīng)用.19、(1)=4;(2)=n.【解析】
試題分析:(1)根據(jù)題目中的式子的變化規(guī)律可以寫出第四個等式;(2)根據(jù)題目中的式子的變化規(guī)律可以猜想出第n等式并加以證明.試題解析:解:(1)由題目中式子的變化規(guī)律可得,第四個等式是:=4;(2)第n個等式是:=n.證明如下:∵===n∴第n個等式是:=n.點睛:本題考查規(guī)律型:數(shù)字的變化類,解答本題的關(guān)鍵是明確題目中式子的變化規(guī)律,求出相應(yīng)的式子.20、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據(jù)題意求出點C的坐標,然后將點C和點B的坐標代入直線解析式求出a和b的值;(2)、根據(jù)題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進行計算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進行計算得出t的值.試題解析:(1)、解:∵點C是直線l1:y=x+1與軸的交點,∴C(0,1),∵點C在直線l2上,∴b=1,∴直線l2的解析式為y=ax+1,∵點B在直線l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式為y=x+1,令y=0,∴x=﹣1,由圖象知,點Q在點A,B之間,∴﹣1<n<2(3)、解:如圖,∵△PAC是等腰三角形,∴①點x軸正半軸上時,當AC=P1C時,∵CO⊥x軸,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②當P2A=P2C時,易知點P2與O重合,∴BP2=OB=2,∴2÷1=2s,③點P在x軸負半軸時,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.點睛:本題主要考查的就是一次函數(shù)的性質(zhì)、等腰三角形的性質(zhì)和動點問題,解決這個問題的關(guān)鍵就是要能夠根據(jù)題意進行分類討論,從而得出答案.在解決一次函數(shù)和等腰三角形問題時,我們一定要根據(jù)等腰三角形的性質(zhì)來進行分類討論,可以利用圓規(guī)來作出圖形,然后根據(jù)實際題目來求出答案.21、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質(zhì)和菱形的性質(zhì)即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質(zhì)和面積;2.平行四邊形的性質(zhì);3.解直角三角形.22、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】
(1)根據(jù)3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應(yīng)的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關(guān)系式;②根據(jù)①中的函數(shù)關(guān)系式和B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設(shè)一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數(shù)關(guān)系式為;②∵B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,,解得,,,∴當時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應(yīng)用、一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和方程的知識解答.23、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】
(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版承包工地食堂餐廚垃圾處理合同模板3篇
- 2024蔬菜加工產(chǎn)品銷售合作協(xié)議3篇
- 2024年股權(quán)轉(zhuǎn)讓合同標的及屬性詳細描述
- 2024年版物業(yè)托管服務(wù)協(xié)議版B版
- 二零二五版離婚協(xié)議書起草與審核合同2篇
- 2024版房屋贈與合同協(xié)議書大全
- 天津中德應(yīng)用技術(shù)大學《教育技術(shù)與傳播》2023-2024學年第一學期期末試卷
- 二零二五版家政服務(wù)+家庭健康促進合同3篇
- 太原幼兒師范高等??茖W校《西醫(yī)外科學醫(yī)學免疫學與病原生物學》2023-2024學年第一學期期末試卷
- 二零二五年特殊用途變壓器安裝與性能測試合同2篇
- 迪士尼樂園總體規(guī)劃
- 2024年江蘇省蘇州市中考數(shù)學試卷含答案
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 介紹蝴蝶蘭課件
- 大學計算機基礎(chǔ)(第2版) 課件 第1章 計算機概述
- 數(shù)字化年終述職報告
- 《阻燃材料與技術(shù)》課件 第5講 阻燃塑料材料
- 2024年職工普法教育宣講培訓課件
- 安保服務(wù)評分標準
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標準
- (人教PEP2024版)英語一年級上冊Unit 1 教學課件(新教材)
評論
0/150
提交評論