版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省杭州市杭州風帆中學2024屆中考數學五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.52.某種計算器標價240元,若以8折優(yōu)惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元3.如圖,在?ABCD中,對角線AC的垂直平分線分別交AD、BC于點E、F,連接CE,若△CED的周長為6,則?ABCD的周長為()A.6 B.12 C.18 D.244.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5.若關于x的不等式組恰有3個整數解,則字母a的取值范圍是()A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣16.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.7.如圖,將矩形ABCD沿EM折疊,使頂點B恰好落在CD邊的中點N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.228.﹣的絕對值是()A.﹣ B. C.﹣2 D.29.二次函數y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣210.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小正方體的個數,那么該幾何體的主視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.12.若關于x的方程kx2+2x﹣1=0有實數根,則k的取值范圍是_____.13.如圖,AB為⊙0的弦,AB=6,點C是⊙0上的一個動點,且∠ACB=45°,若點M、N分別是AB、BC的中點,則MN長的最大值是______________.14.七巧板是我國祖先創(chuàng)造的一種智力玩具,它來源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個梯形,若正方形ABCD的邊長為12cm,則梯形MNGH的周長是cm(結果保留根號).15.已知一個菱形的邊長為5,其中一條對角線長為8,則這個菱形的面積為_____.16.計算的結果是_____三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,四邊形的頂點是坐標原點,點在第一象限,點在第四象限,點在軸的正半軸上,且.(1)求點和點的坐標;(2)點是線段上的一個動點(點不與點重合),以每秒個單位的速度由點向點運動,過點的直線與軸平行,直線交邊或邊于點,交邊或邊于點,設點.運動時間為,線段的長度為,已知時,直線恰好過點.①當時,求關于的函數關系式;②點出發(fā)時點也從點出發(fā),以每秒個單位的速度向點運動,點停止時點也停止.設的面積為,求與的函數關系式;③直接寫出②中的最大值是.18.(8分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.19.(8分)如圖,AB是⊙O的直徑,,連結AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.求∠BAC的度數;當點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運動過程中①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數;②設⊙O的半徑為6,點E到直線l的距離為3,連結BD,DE,直接寫出△BDE的面積.20.(8分)先化簡,再求值:(1﹣)÷,其中x=1.21.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x22.(10分)如圖,四邊形ABCD內接于圓,對角線AC與BD相交于點E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.23.(12分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.24.已知x1﹣1x﹣1=1.求代數式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
解:,①+②得:3(x+y)=15,則x+y=5,故選D2、C【解析】【分析】設進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【詳解】設進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【點睛】本題考核知識點:列方程解應用題.解題關鍵點:找出相等關系.3、B【解析】∵四邊形ABCD是平行四邊形,∴DC=AB,AD=BC,∵AC的垂直平分線交AD于點E,∴AE=CE,∴△CDE的周長=DE+CE+DC=DE+AE+DC=AD+DC=6,∴?ABCD的周長=2×6=12,故選B.4、A【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.5、B【解析】
根據“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個整數解,∴整數解為1,0,-1,∴-2≤a<-1.故選B.【點睛】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.6、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.7、A【解析】
如圖,運用矩形的性質首先證明CN=3,∠C=90°;運用翻折變換的性質證明BM=MN(設為λ),運用勾股定理列出關于λ的方程,求出λ,即可解決問題.【詳解】如圖,由題意得:BM=MN(設為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【點睛】該題主要考查了翻折變換的性質、矩形的性質、勾股定理等幾何知識點及其應用問題;解題的關鍵是靈活運用翻折變換的性質、矩形的性質、勾股定理等幾何知識點來分析、判斷、推理或解答.8、B【解析】
根據求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負數的絕對值等于它的相反數,是解題的關鍵.9、D【解析】
根據二次函數頂點式的性質解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數頂點式y(tǒng)=a(x-h)2+k的性質,對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質是解題關鍵.10、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.二、填空題(本大題共6個小題,每小題3分,共18分)11、300π【解析】試題分析:首先根據底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算12、k≥-1【解析】
首先討論當時,方程是一元一次方程,有實數根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.13、3【解析】
根據中位線定理得到MN的最大時,AC最大,當AC最大時是直徑,從而求得直徑后就可以求得最大值.【詳解】解:因為點M、N分別是AB、BC的中點,由三角形的中位線可知:MN=AC,所以當AC最大為直徑時,MN最大.這時∠B=90°又因為∠ACB=45°,AB=6解得AC=6MN長的最大值是3.故答案為:3.【點睛】本題考查了三角形的中位線定理、等腰直角三角形的性質及圓周角定理,解題的關鍵是了解當什么時候MN的值最大,難度不大.14、24+24【解析】
仔細觀察梯形從而發(fā)現其各邊與原正方形各邊之間的關系,則不難求得梯形的周長.【詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【點睛】此題主要考查學生對等腰梯形的性質及正方形的性質的運用及觀察分析圖形的能力.15、1【解析】試題解析:如圖,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴這個菱形的面積為:AC?BD=×6×8=1.16、【解析】【分析】根據二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則.三、解答題(共8題,共72分)17、(1);(2)①;②當時,;當時,;當時,;③.【解析】
(1)根據等腰直角三角形的性質即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標,利用兩點間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數,利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時,直線恰好過點.,直線的解析式為,直線的解析式為①當時,,②當時,當時,當時,③當時,,時,的最大值為.當時,.時,的值最大,最大值為.當時,,時,的最大值為,綜上所述,最大值為故答案為.【點睛】本題考查四邊形綜合題、一次函數的應用、二次函數的應用、等腰直角三角形的性質等知識,解題的關鍵是學會構建一次函數或二次函數解決實際問題,屬于中考壓軸題.18、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設,利用求線段中點的公式列出關于m的方程組,再利用0<m<1即可求解;(1)連結BD,過點D作x軸的垂線交BC于點H,由,設出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設點E(a,b)∵0<m<1,∴當m=1時,縱坐標最小值為2當m=1時,最大值為2∴點E縱坐標的范圍為(1)連結BD,過點D作x軸的垂線交BC于點H∵CE=CD∴H(m,-m+1)∴當m=1.5時,.點睛:本題考查了二次函數的綜合題、待定系數法、一次函數等知識點,解題的關鍵是靈活運用所學知識解決問題,會用方程的思想解決問題.19、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】
(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補法求面積;②根據△EPC∽△EBA可求PC=4,根據△PDC∽△PCA可求PD?PA=PC2=16,再根據S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當B在PA的中垂線上,且P在右時,∠ACD=15°;(Ⅱ)如圖3,當B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;(Ⅳ)如圖5,A在PB的中垂線上,且P在左時∠ACD=120°②(Ⅰ)如圖6,,.(Ⅱ)如圖7,,,.,.,,,.設BD=9k,PD=2k,,,,.【點睛】本題是圓的綜合題,熟練掌握30°角所對的直角邊等于斜邊的一半,平行線的性質,垂直平分線的性質,相似三角形的判定與性質,圓周角定理,圓內接四邊形的性質,勾股定理,同底等高的三角形的面積相等是解答本題的關鍵.20、.【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把x的值代入計算即可求出值.【詳解】原式==當x=1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握運算法則是解答本題的關鍵.21、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解析】
(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解此題的關鍵.22、(1)詳見解析;(2)詳見解析.【解析】
(1)利用在同圓中所對的弧相等,弦相等,所對的圓周角相等,三角形內角和可證得∠CDF=90°,則CD⊥DF;(2)應先找到BC的一半,證明BC的一半和CD相等即可.【詳解】證明:(1)∵AB=AD,∴弧AB=弧AD,∠ADB=∠ABD.∵∠ACB=∠ADB,∠ACD=∠ABD,∴∠ACB=∠ADB=∠ABD=∠ACD.∴∠ADB=(180°﹣∠BAD)÷2=90°﹣∠DFC.∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,∴CD⊥DF.(2)過F作FG⊥BC于點G,∵∠ACB=∠ADB,又∵∠BFC=∠BAD,∴∠FBC=∠ABD=∠ADB=∠ACB.∴FB=FC.∴FG平分BC,G為BC中點,∵在△FGC和△DFC中,∴△FGC≌△DF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《兒童視力保健》課件
- 《抗菌藥物概論課件》課件
- 蜂產品課件蜂產品中抗生素殘留現狀及檢測
- 保險基礎知識課件-保險的性質、功能及作用
- 奧數雞兔同籠課件
- 地理信息系統(tǒng)的應用課件
- 曲線積分與曲面積分習題課課件
- 2.1 立在地球邊上放號 課件(共37張)
- 植物提取物生產線項目可行性研究報告模板-立項備案
- 2024年全國愛耳日活動方案(34篇)
- 2023-2024學年浙江省麗水市蓮都區(qū)教科版三年級上冊期末考試科學試卷
- 醫(yī)療組長競聘
- 失禁性皮炎病例護理查房課件
- 期末復習試題 (試卷)-2024-2025學年四年級上冊數學人教版
- 2024年中國工業(yè)級硝酸銨市場調查研究報告
- 鄉(xiāng)村振興課件教學課件
- 2024年度危廢物品轉運服務協議版
- 2023年輔警招聘公安基礎知識必刷題庫及答案
- 《機加工操作員績效考核方案》-企業(yè)管理
- 光是怎樣傳播的說課稿
- 勞動技能實操指導(勞動教育)學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論