下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
4/4甘肅省天水市第一中學2017屆高三下學期第三次診斷考試數(shù)學(理)試卷答案一、選擇題1~5.BAADB6~10.CDBBC11~12.DC二、填空題13.214.15.24016.420三、解答題17.(1)因為,所以,所以,所以,又因為,所以.(2)因為,,,所以,,所以,因為,所以.又因為,所以,所以.18.(1),,.所以某員工選擇方案甲進行抽獎所獲金(元)的分布列為:5001000(2)由(1)可知,選擇方案甲進行抽獎所獲得獎金的均值,若選擇方案乙進行抽獎中獎次數(shù),則,抽獎所獲獎金的均值,故選擇方案甲較劃算.19.證明:(1)由,,可得,由,且,可得,又,知,所以,又平面平面,平面平面,平面,所以平面.(2)以為坐標原點,、所在直線分別為,軸建立空間直角坐標系,得,,,.所以,,,可求得平面的一個法向量是,設直線與平面所成的角為,得.故直線和平面所成角的正弦值為.20.(1)因為為橢圓的焦點,所以,又,所以,所以橢圓方程為.(2)當直線無斜率時,直線方程為,此時,,,面積相等,,當直線斜率存在時,設直線方程為,設,,和橢圓方程聯(lián)立得,消掉得,顯然,方程有根,且,,此時,因為,上式,(時等號成立),所以的最大值為.21.解:(1)當時,,,,∵當時,,∴,∴在上為減函數(shù).(2)設,,,令,,則,當時,,有,∴在上是減函數(shù),即在上是減函數(shù),又∵,,∴存在唯一的,使得,∴當時,,在區(qū)間單調遞增;當時,,在區(qū)間單調遞減,因此在區(qū)間上,∵,∴,將其代入上式得:,令,,則,即有,,∵的對稱軸,∴函數(shù)在區(qū)間上是增函數(shù),且,∴,.即任意,,∴,因此任意,.22.解:(1)直線方程:,,∴,∴圓的直角坐標方程為,即,∴圓心到直線的距離為,故直線與橢圓相離.(2)直線的參數(shù)方程化為普通方程為,則圓心到直線的距離為,∴直線上的點向圓引的切線長的最小值為.23.解:(1)由,得,∴不等式的整數(shù)解為2,∴,又不等式僅有一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024自然人之間借款合同范本
- 2025年度城市綜合體場地合作經營合同
- 2025年度文化產業(yè)園物業(yè)管理與文化活動策劃服務協(xié)議3篇
- 2024版教育機構裝潢工程合同樣本
- 二零二四年度9A文智能家居系統(tǒng)定制開發(fā)合同
- 2024版環(huán)評工程服務合同范本大全
- 2025年度生態(tài)農業(yè)用地承包種植合作合同規(guī)范文本3篇
- 二零二四年度BIM可視化展示與演示合同
- 二零二五年度廁所改造工程環(huán)保標準制定合同2篇
- 二零二五年度金融借款合同電子化轉型的法律挑戰(zhàn)3篇
- 離職分析報告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預防和處理條例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 高三數(shù)學寒假作業(yè)1
- 保險產品創(chuàng)新與市場定位培訓課件
- (完整文本版)體檢報告單模版
- 1例左舌鱗癌手術患者的圍手術期護理體會
- (完整)100道兩位數(shù)加減兩位數(shù)口算題(難)
- 鋼結構牛腿計算
評論
0/150
提交評論