![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第03講 不等式與不等關(guān)系(含解析)_第1頁](http://file4.renrendoc.com/view2/M00/01/14/wKhkFma0FXaAeM-uAAFzAMcmMNY219.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第03講 不等式與不等關(guān)系(含解析)_第2頁](http://file4.renrendoc.com/view2/M00/01/14/wKhkFma0FXaAeM-uAAFzAMcmMNY2192.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第03講 不等式與不等關(guān)系(含解析)_第3頁](http://file4.renrendoc.com/view2/M00/01/14/wKhkFma0FXaAeM-uAAFzAMcmMNY2193.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第03講 不等式與不等關(guān)系(含解析)_第4頁](http://file4.renrendoc.com/view2/M00/01/14/wKhkFma0FXaAeM-uAAFzAMcmMNY2194.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第03講 不等式與不等關(guān)系(含解析)_第5頁](http://file4.renrendoc.com/view2/M00/01/14/wKhkFma0FXaAeM-uAAFzAMcmMNY2195.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第03講不等式與不等關(guān)系(精講)題型目錄一覽不等式性質(zhì)的應(yīng)用比較數(shù)(式)的大小已知不等式的關(guān)系,求目標(biāo)式的取值范圍不等式的綜合問題一、知識點(diǎn)梳理一、知識點(diǎn)梳理1.比較大小基本方法關(guān)系方法做差法與0比較做商法與1比較SKIPIF1<0SKIPIF1<0SKIPIF1<0或SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0或SKIPIF1<02.不等式的性質(zhì)性質(zhì)性質(zhì)內(nèi)容對稱性SKIPIF1<0傳遞性SKIPIF1<0可加性SKIPIF1<0可乘性SKIPIF1<0同向可加性SKIPIF1<0同向同正可乘性SKIPIF1<0可乘方性SKIPIF1<0【常用結(jié)論】1.作差法比較大小的步驟是:(1)作差;(2)變形;(3)判斷差式與0的大小;(4)下結(jié)論.作商比較大小(一般用來比較兩個(gè)正數(shù)的大?。┑牟襟E是:(1)作商;(2)變形;(3)判斷商式與1的大?。唬?)下結(jié)論.注:其中變形是關(guān)鍵,變形的方法主要有通分、因式分解和配方等,變形要徹底,要有利于0或1比較大小.作差法是比較兩數(shù)(式)大小最為常用的方法,如果要比較的兩數(shù)(式)均為正數(shù),且是冪或者因式乘積的形式,也可考慮使用作商法.2.等式形式及不等式形式解題思路二、題型分類精講二、題型分類精講題型一不等式性質(zhì)的應(yīng)用策略方法1.判斷不等式是否恒成立,需要給出推理或者反例說明.2.充分利用基本初等函數(shù)性質(zhì)進(jìn)行判斷.3.小題可以用特殊值法做快速判斷.【典例1】已知SKIPIF1<0,則下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0可得SKIPIF1<0,然后對選項(xiàng)一一分析即可得出答案.【詳解】由SKIPIF1<0可知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0錯(cuò)誤;因?yàn)镾KIPIF1<0,但無法判定SKIPIF1<0與1的大小,所以B錯(cuò)誤;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故D錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故C正確.故選:C.【題型訓(xùn)練】一、單選題1.(2023·北京·匯文中學(xué)??寄M預(yù)測)如果SKIPIF1<0,那么下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)不等式的性質(zhì)判斷A、B,再根據(jù)指數(shù)函數(shù)的性質(zhì)判斷C,根據(jù)對數(shù)函數(shù)的性質(zhì)判斷D;【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤;因?yàn)镾KIPIF1<0,且SKIPIF1<0在定義域上單調(diào)遞減,所以SKIPIF1<0,故C錯(cuò)誤;因?yàn)镾KIPIF1<0,且SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故D正確;故選:D2.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則下列不等式中一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】ABC可以通過舉出反例,D選項(xiàng)可以通過不等式的基本性質(zhì)進(jìn)行求解.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0無意義,故ABC錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,D正確.故選:D3.(2023·高三課時(shí)練習(xí))給出下列命題:①若a>b,則SKIPIF1<0;②若SKIPIF1<0,則SKIPIF1<0;③若a>b,則SKIPIF1<0;④若SKIPIF1<0,則SKIPIF1<0.其中,正確的命題是(
).A.①② B.②③ C.③④ D.①④【答案】B【分析】①④可舉出反例,②可通過不等式的基本性質(zhì)得到;③可利用冪函數(shù)的單調(diào)性得到.【詳解】若SKIPIF1<0,此時(shí)SKIPIF1<0,①錯(cuò)誤;若SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,兩邊平方可得:SKIPIF1<0,②正確;因?yàn)镾KIPIF1<0在R上單調(diào)遞增,故若SKIPIF1<0,則SKIPIF1<0,③正確;若SKIPIF1<0,不妨設(shè)SKIPIF1<0,不滿足SKIPIF1<0,④錯(cuò)誤.故選:B4.(2023·吉林·統(tǒng)考三模)已知SKIPIF1<0,則下列不等式不一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】A選項(xiàng),由不等式基本性質(zhì)得到A正確;B選項(xiàng),利用基本不等式求出SKIPIF1<0;C選項(xiàng),作差法比較出大小關(guān)系;D選項(xiàng),舉出反例即可.【詳解】A選項(xiàng),SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0兩邊同乘以SKIPIF1<0得,SKIPIF1<0,A成立;B選項(xiàng),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,由基本不等式得SKIPIF1<0,故B成立;C選項(xiàng),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,C成立;D選項(xiàng),不妨取SKIPIF1<0,滿足SKIPIF1<0,此時(shí)SKIPIF1<0,故D不一定成立.故選:D5.(2023·全國·高三專題練習(xí))已知logax>logay(0<a<1),則下列不等式恒成立的是()A.y2<x2 B.tanx<tany C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)對數(shù)函數(shù)的單調(diào)性判斷A、D選項(xiàng),取特殊值法判斷B,根據(jù)對數(shù)函數(shù)的單調(diào)性以及不等式性質(zhì)判斷C.【詳解】∵logax>logay(0<a<1),∴0<x<y,∴y2>x2,SKIPIF1<0,故A和D錯(cuò)誤;選項(xiàng)B,當(dāng)SKIPIF1<0,取xSKIPIF1<0,ySKIPIF1<0時(shí),SKIPIF1<0,但SKIPIF1<0;顯然有tanx>tany,故B錯(cuò)誤;選項(xiàng)C,由0<x<y可得SKIPIF1<0,故C正確;故選:C.6.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,下列不等式中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0,結(jié)合不等式的性質(zhì)及基本不等式即可判斷出結(jié)論.【詳解】解:對于選項(xiàng)A,因?yàn)镾KIPIF1<0,而SKIPIF1<0的正負(fù)不確定,故A錯(cuò)誤;對于選項(xiàng)B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤;對于選項(xiàng)C,依題意SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故C正確;對于選項(xiàng)D,因?yàn)镾KIPIF1<0與SKIPIF1<0正負(fù)不確定,故大小不確定,故D錯(cuò)誤;故選:C.二、多選題7.(2023·全國·模擬預(yù)測)若SKIPIF1<0,SKIPIF1<0,則(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】由不等式的性質(zhì)可判斷A;利用特值法可判斷B,C;利用作差法可判斷D.【詳解】對于A:由題意可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故A正確;對于B:當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),滿足已知條件,但SKIPIF1<0,故B錯(cuò)誤;對于C:當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),滿足已知條件,但SKIPIF1<0,故C錯(cuò)誤;對于D:SKIPIF1<0,因?yàn)镾KIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:AD.8.(2023·全國·模擬預(yù)測)已知a,b為實(shí)數(shù),且SKIPIF1<0,則下列不等式正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】利用不等式的性質(zhì)可判斷A錯(cuò)誤;由基本不等式的應(yīng)用計(jì)算可得B正確;利用作差法可知選項(xiàng)C正確;根據(jù)基本不等式計(jì)算可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,但顯然SKIPIF1<0,即D錯(cuò)誤.【詳解】對于A,由SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,由不等式性質(zhì)可得SKIPIF1<0,所以SKIPIF1<0,即A錯(cuò)誤.對于B,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號,B正確.對于C,作差可得SKIPIF1<0,所以SKIPIF1<0,C正確.對于D,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號,顯然取不到等號,D錯(cuò)誤.故選:BC.9.(2022·全國·統(tǒng)考高考真題)若x,y滿足SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】根據(jù)基本不等式或者取特值即可判斷各選項(xiàng)的真假.【詳解】因?yàn)镾KIPIF1<0(SKIPIF1<0R),由SKIPIF1<0可變形為,SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以A錯(cuò)誤,B正確;由SKIPIF1<0可變形為SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號,所以C正確;因?yàn)镾KIPIF1<0變形可得SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)滿足等式,但是SKIPIF1<0不成立,所以D錯(cuò)誤.故選:BC.題型二比較數(shù)(式)的大小與比較法證明不等式策略方法比較兩個(gè)數(shù)或代數(shù)式的大小的三種方法(1)當(dāng)兩個(gè)數(shù)(或式子)正負(fù)未知且為多項(xiàng)式時(shí),用作差法.步驟:①作差;②變形;③判斷差的符號;④下結(jié)論.變形技巧:①分解因式;②平方后再作差;③配方;④分子、分母有理化;⑤通分.(2)作商法:適用于分式、指數(shù)式、對數(shù)式,要求兩個(gè)數(shù)(或式子)為正數(shù).步驟:①作商;②變形;③判斷商與1的大小;④下結(jié)論.(3)特殊值法:對于比較復(fù)雜的代數(shù)式比較大小,利用不等式的性質(zhì)不易比較大小時(shí),可以采用特殊值法比較.【典例1】若SKIPIF1<0,則下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用作差比較法及不等式的性質(zhì)逐項(xiàng)判斷即可求解.【詳解】對于A,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,于是有SKIPIF1<0故A錯(cuò)誤;對于B,因?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,但SKIPIF1<0與SKIPIF1<0的大小不確定,故不一定成立,故B錯(cuò)誤;對于C,因?yàn)镾KIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,于是有SKIPIF1<0,故C正確;對于D,因?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,于是有SKIPIF1<0,故D錯(cuò)誤.故選:C.【題型訓(xùn)練】一、單選題1.(2023秋·廣東清遠(yuǎn)·高一統(tǒng)考期末)“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】B【分析】做差可判斷充分性,取SKIPIF1<0可判斷必要性可得答案.【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,所以充分性成立;但當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0也成立,所以必要性不成立.因此“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:B.二、多選題2.(2023·云南昆明·高三昆明一中校考階段練習(xí))若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則下列不等式中一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】利用比差法比較SKIPIF1<0的大小判斷A,利用比差法比較SKIPIF1<0的大小判斷B,利用基本不等式比較SKIPIF1<0的大小,判斷C,舉反例判斷D.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,對于A:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號成立,所以SKIPIF1<0,A正確;對于B:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,B錯(cuò)誤;對于C:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號成立,又SKIPIF1<0,所以等號不成立,C正確;對于D:令SKIPIF1<0,SKIPIF1<0,滿足條件SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,但是SKIPIF1<0,D錯(cuò)誤.故選:AC.3.(2023秋·遼寧丹東·高一統(tǒng)考期末)若SKIPIF1<0,SKIPIF1<0,則下列不等式成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】根據(jù)不等式的性質(zhì)逐項(xiàng)判斷即可.【詳解】對于A,由SKIPIF1<0,則SKIPIF1<0,故A正確;對于B,SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤;對于C,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;對于D,SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故D正確.故選:AD.三、填空題4.(2023春·吉林長春·高一??茧A段練習(xí))設(shè)SKIPIF1<0、SKIPIF1<0為實(shí)數(shù),比較兩式的值的大?。篠KIPIF1<0_______SKIPIF1<0(用符號SKIPIF1<0或=填入劃線部分).【答案】SKIPIF1<0【分析】利用作差比較法求得正確答案.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0時(shí)等號成立,所以SKIPIF1<0.故答案為:SKIPIF1<05.(2023·全國·高三專題練習(xí))已知a>0,b>0,則p=SKIPIF1<0﹣a與q=b﹣SKIPIF1<0的大小關(guān)系是_____.【答案】SKIPIF1<0【分析】由已知結(jié)合作差法進(jìn)行變形后即可比較大?。驹斀狻恳?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0時(shí)取等號,所以SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查了不等式大小的比較,作差法的應(yīng)用是求解問題的關(guān)鍵.四、解答題6.(2023·高三課時(shí)練習(xí))(1)已知a>b>0,c<d<0,求證:SKIPIF1<0;(2)設(shè)x,SKIPIF1<0,比較SKIPIF1<0與SKIPIF1<0的大小.【答案】(1)證明見解析(2)答案見解析【分析】(1)由不等式的性質(zhì)即可證明.(2)要比較SKIPIF1<0與SKIPIF1<0的大小,將兩式做差展開化簡,得到SKIPIF1<0即可判斷正負(fù)并比較出結(jié)果.【詳解】(1)由a>b>0,c<d<0,得-c>-d>0,a-c>b-d>0,從而得SKIPIF1<0.又a>b>0,所以SKIPIF1<0.(2)因?yàn)镾KIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)x=y(tǒng)時(shí)等號成立,所以當(dāng)x=y(tǒng)時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.7.(2023·全國·高三專題練習(xí))比較SKIPIF1<0與SKIPIF1<0)的大小.【答案】SKIPIF1<0【分析】做差化簡,分情況討論比較大小.【詳解】SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;綜上所得SKIPIF1<0.題型三已知不等式的關(guān)系,求目標(biāo)式的取值范圍策略方法1.判斷不等式是否成立的方法(1)不等式性質(zhì)法:直接利用不等式的性質(zhì)逐個(gè)驗(yàn)證,利用不等式的性質(zhì)時(shí)要特別注意前提條件.(2)特殊值法:利用特殊值排除錯(cuò)誤答案.(3)單調(diào)性法:當(dāng)直接利用不等式的性質(zhì)不能比較大小時(shí),可以利用指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)等函數(shù)的單調(diào)性進(jìn)行判斷.2.利用不等式的性質(zhì)求取值范圍的方法(1)已知x,y的范圍,求F(x,y)的范圍.可利用不等式的性質(zhì)直接求解.(2)已知f(x,y),g(x,y)的范圍,求F(x,y)的范圍.可利用待定系數(shù)法解決,即設(shè)F(x,y)=mf(x,y)+ng(x,y),用恒等變形求得m,n,再利用不等式的性質(zhì)求得F(x,y)的取值范圍.【典例1】已知SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用方程組以及不等式的性質(zhì)計(jì)算求解.【詳解】設(shè)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故A,C,D錯(cuò)誤.故選:B.【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由不等式的性質(zhì)求解【詳解】SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0故選:C2.(2023·全國·高三專題練習(xí))已知-3<a<-2,3<b<4,則SKIPIF1<0的取值范圍為(
)A.(1,3)B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【分析】先求出a2的范圍,利用不等式的性質(zhì)即可求出SKIPIF1<0的范圍.【詳解】因?yàn)椋?<a<-2,所以a2∈(4,9),而3<b<4,故SKIPIF1<0的取值范圍為(1,3),故選:A.3.(2023秋·廣東·高三校聯(lián)考期末)已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)不等式的同向可加性,結(jié)合待定系數(shù)法可得SKIPIF1<0,即可得SKIPIF1<0的取值范圍.【詳解】解:設(shè)SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,由不等式的性質(zhì)得:SKIPIF1<0,則SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.4.(2023·全國·高三專題練習(xí))已知SKIPIF1<0且滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,求出SKIPIF1<0結(jié)合條件可得結(jié)果.【詳解】設(shè)SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0.故選:C.5.(2023秋·貴州銅仁·高三統(tǒng)考期末)已知實(shí)數(shù)x,y分別是方程SKIPIF1<0的解,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)實(shí)數(shù)x,y分別是方程SKIPIF1<0的解可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0.【詳解】因SKIPIF1<0表示實(shí)數(shù)t的范圍是SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值是3;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值是0.故SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.二、多選題6.(2023·全國·高三專題練習(xí))已知實(shí)數(shù)x,y滿足SKIPIF1<0則(
)A.SKIPIF1<0的取值范圍為SKIPIF1<0 B.SKIPIF1<0的取值范圍為SKIPIF1<0C.SKIPIF1<0的取值范圍為SKIPIF1<0 D.SKIPIF1<0的取值范圍為SKIPIF1<0【答案】ABD【解析】利用不等式的性質(zhì)直接求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故C錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故D正確.故選:ABD.7.(2023春·河北衡水·高三河北衡水中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0的取值可以為(
)A.10 B.11 C.12 D.20【答案】CD【分析】根據(jù)條件及基本不等式可得SKIPIF1<0,進(jìn)而即得.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,而SKIPIF1<0時(shí)SKIPIF1<0,即等號不能同時(shí)成立,所以SKIPIF1<0,故AB錯(cuò)誤,CD正確.故選:CD.三、填空題8.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的取值范圍是__________【答案】SKIPIF1<0【分析】先根據(jù)SKIPIF1<0求出SKIPIF1<0的范圍,利用SKIPIF1<0的范圍可得SKIPIF1<0的取值范圍.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0;故答案為:SKIPIF1<0.9.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的取值范圍是_______________【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,解出SKIPIF1<0,再利用不等式的可加性求解即可得出.【詳解】設(shè)SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0.∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0①,∵SKIPIF1<0,∴SKIPIF1<0②,①SKIPIF1<0②,得SKIPIF1<0,即SKIPIF1<0的取值范圍SKIPIF1<0.故答案為:SKIPIF1<0.題型四不等式的綜合問題【典例1】4.若正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)函數(shù)單調(diào)性及SKIPIF1<0得到SKIPIF1<0或SKIPIF1<0,分別討論兩種情況下四個(gè)選項(xiàng)是否正確,A選項(xiàng)可以用對數(shù)函數(shù)單調(diào)性得到,B選項(xiàng)可以用作差法,C選項(xiàng)用作差法及指數(shù)函數(shù)單調(diào)性進(jìn)行求解,D選項(xiàng),需要構(gòu)造函數(shù)進(jìn)行求解.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0為單調(diào)遞增函數(shù),故SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0;SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;故ABC均錯(cuò)誤;對于D選項(xiàng),SKIPIF1<0,兩邊取自然對數(shù),SKIPIF1<0,因?yàn)椴还躍KIPIF1<0,還是SKIPIF1<0,均有SKIPIF1<0,所以SKIPIF1<0,故只需證SKIPIF1<0即可.設(shè)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0且SKIPIF1<0上恒成立,故SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)單調(diào)遞減,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,結(jié)論得證,所以D正確.故選:D.【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))已知正實(shí)數(shù)x,y滿足SKIPIF1<0,則下列不等式恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用特殊值判斷AC,利用不等式性質(zhì)及指數(shù)函數(shù)單調(diào)性判斷B,根據(jù)排除法判斷D.【詳解】取SKIPIF1<0,則SKIPIF1<0不成立,故A錯(cuò)誤;由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故B錯(cuò)誤;取SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;由ABC錯(cuò)誤,排除法知,故D正確.故選:D2.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)不等式的性質(zhì),結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性、作差法比較大小等知識,逐一分析各個(gè)選項(xiàng),即可得答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,對于A:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤;對于B:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),又SKIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤;對于C:SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;對于D:SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D正確.故選:D3.(2023·全國·高三專題練習(xí))設(shè)SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】(1)利用冪函數(shù)單調(diào)性即可判斷A,利用正切函數(shù)單調(diào)性即可判斷B,舉例SKIPIF1<0,SKIPIF1<0即可判斷C,利用對勾函數(shù)和二次函數(shù)性質(zhì)即可判斷D.【詳解】根據(jù)冪函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)增函數(shù),故SKIPIF1<0時(shí),SKIPIF1<0,故A錯(cuò)誤,根據(jù)三角函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)增函數(shù),故SKIPIF1<0時(shí),故SKIPIF1<0,故B錯(cuò)誤,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,但SKIPIF1<0與SKIPIF1<0的大小關(guān)系不明,如SKIPIF1<0,SKIPIF1<0,顯然此時(shí)SKIPIF1<0,故C錯(cuò)誤,根據(jù)對勾函數(shù)的圖像與性質(zhì)當(dāng)SKIPIF1<0時(shí),可知SKIPIF1<0,而SKIPIF1<0,根據(jù)二次函數(shù)SKIPIF1<0圖像與性質(zhì)可知其值域,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,故SKIPIF1<0,故D正確.故選:D.4.(2023·河南鄭州·統(tǒng)考二模)已知SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題設(shè)SKIPIF1<0,SKIPIF1<0,結(jié)合重要不等式、基本不等式判斷各項(xiàng)的正誤即可.【詳解】由題設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò);SKIPIF1<0且SKIPIF1<0,而SKIPIF1<0,故B對;SKIPIF1<0,故C錯(cuò);SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,故D錯(cuò).故選:B.5.(2023·全國·高三專題練習(xí))已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先求得SKIPIF1<0及SKIPIF1<0的取值范圍,再把SKIPIF1<0轉(zhuǎn)化為關(guān)于SKIPIF1<0的代數(shù)式SKIPIF1<0,利用函數(shù)SKIPIF1<0的單調(diào)性去求SKIPIF1<0的取值范圍即可解決【詳解】由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0又SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0故選:C6.(2023·全國·模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,試比較a,b,c的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先利用SKIPIF1<0常見的不等式,估計(jì)出SKIPIF1<0的范圍,精確估計(jì)出SKIPIF1<0,然后利用作商法比較大小.【詳解】先證明兩個(gè)不等式:(1)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,即SKIPIF1<0成立(2)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0成立再說明一個(gè)基本事實(shí),顯然SKIPIF1<0,于是SKIPIF1<0.由(1)可得,取SKIPIF1<0,可得SKIPIF1<0;由(2)可得,取SKIPIF1<0,可得SKIPIF1<0,再取SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,顯然SKIPIF1<0,于是SKIPIF1<0;SKIPIF1<0,顯然SKIPIF1<0,于是SKIPIF1<0.故SKIPIF1<0.故選:B二、多選題7.(2023·全國·校聯(lián)考模擬預(yù)測)設(shè)SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0的最小值為0 D.SKIPIF1<0的最小值為SKIPIF1<0【答案】ACD【分析】根據(jù)不等式的性質(zhì)及基本不等式求最值的方法,對選項(xiàng)逐個(gè)檢驗(yàn)即可得到答案.【詳解】對于A,由SKIPIF1<0解得SKIPIF1<0,故A正確;對于B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,故B錯(cuò)誤;對于C,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立,故C正確;對于D,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號成立,故D正確.故選:ACD.8.(2023·全國·模擬預(yù)測)若SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】根據(jù)SKIPIF1<0判斷A;根據(jù)SKIPIF1<0,SKIPIF1<0等式成立判斷B;根據(jù)基本不等式放縮判斷C;根據(jù)SKIPIF1<0,結(jié)合不等式的性質(zhì)判斷D.【詳解】解:對于A:由題意得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故A正確;對于B:取SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,但SKIPIF1<0,故B錯(cuò)誤;對于C:易知SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0SKIPIF1<0時(shí)等號成立,故C正確;對于D:由SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D正確.故選:ACD9.(2023·遼寧·校聯(lián)考二模)已知正數(shù)x,y滿足SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 33223-2024軋制設(shè)備術(shù)語
- Target-Protein-Ligand-Linker-Conjugates-4-生命科學(xué)試劑-MCE-5926
- 1-2-Dihexanoyl-sn-glycero-3-PS-sodium-生命科學(xué)試劑-MCE-8684
- 二零二五年度離婚協(xié)議書中共同財(cái)產(chǎn)清算起訴狀
- 2025年度電力市場交易購售電合同
- 二零二五年度大型賽事活動合作2025年度營銷合同
- 二零二五年度私人住宅裝修質(zhì)量與安全雙保障協(xié)議
- 2025年度離婚子女債務(wù)償還與財(cái)產(chǎn)分割執(zhí)行協(xié)議
- 2025年度煙酒企業(yè)社會責(zé)任履行與公益合作合同
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)銀行擔(dān)保協(xié)議
- 北京市海淀區(qū)2024-2025學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 2025年廣西柳州市中級人民法院招錄聘用工作人員17人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年全國職業(yè)院校技能大賽高職組(研學(xué)旅行賽項(xiàng))考試題庫(含答案)
- 十八項(xiàng)核心制度
- 2025年物業(yè)公司安全生產(chǎn)工作計(jì)劃(5篇)
- 2025社保政策培訓(xùn)
- 電器儀表人員培訓(xùn)課件
- 2025年中小學(xué)春節(jié)安全教育主題班會課件
- 2023年工程制圖習(xí)題集
- 計(jì)量經(jīng)濟(jì)學(xué)練習(xí)題
- 2025年全國高考體育單招考試模擬政治試卷試題(含答案詳解)
評論
0/150
提交評論