![山東省青島市開發(fā)區(qū)六中學2023-2024學年中考適應(yīng)性考試數(shù)學試題含解析_第1頁](http://file4.renrendoc.com/view7/M00/14/2B/wKhkGWa2wraAJGpzAAIcOzMngrI731.jpg)
![山東省青島市開發(fā)區(qū)六中學2023-2024學年中考適應(yīng)性考試數(shù)學試題含解析_第2頁](http://file4.renrendoc.com/view7/M00/14/2B/wKhkGWa2wraAJGpzAAIcOzMngrI7312.jpg)
![山東省青島市開發(fā)區(qū)六中學2023-2024學年中考適應(yīng)性考試數(shù)學試題含解析_第3頁](http://file4.renrendoc.com/view7/M00/14/2B/wKhkGWa2wraAJGpzAAIcOzMngrI7313.jpg)
![山東省青島市開發(fā)區(qū)六中學2023-2024學年中考適應(yīng)性考試數(shù)學試題含解析_第4頁](http://file4.renrendoc.com/view7/M00/14/2B/wKhkGWa2wraAJGpzAAIcOzMngrI7314.jpg)
![山東省青島市開發(fā)區(qū)六中學2023-2024學年中考適應(yīng)性考試數(shù)學試題含解析_第5頁](http://file4.renrendoc.com/view7/M00/14/2B/wKhkGWa2wraAJGpzAAIcOzMngrI7315.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省青島市開發(fā)區(qū)六中學2023-2024學年中考適應(yīng)性考試數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關(guān)于圖1的四個結(jié)論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC2.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.3.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四4.已知二次函數(shù)y=(x+m)2–n的圖象如圖所示,則一次函數(shù)y=mx+n與反比例函數(shù)y=的圖象可能是()A. B. C. D.5.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+316.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統(tǒng)計如下表,根據(jù)表中的信息判斷,下列結(jié)論中錯誤的是()成績(分)3029282618人數(shù)(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數(shù)為29.4分C.該班學生這次考試成績的眾數(shù)為30分D.該班學生這次考試成績的中位數(shù)為28分7.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為()A.4 B.5 C.6 D.78.已知a-2b=-2,則4-2a+4b的值是()A.0 B.2 C.4 D.89.的值等于()A. B. C. D.10.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x二、填空題(共7小題,每小題3分,滿分21分)11.在我國著名的數(shù)學書九章算術(shù)中曾記載這樣一個數(shù)學問題:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數(shù)、羊價各幾何?”其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問合伙人數(shù)、羊價各是多少?設(shè)羊價為x錢,則可列關(guān)于x的方程為______.12.一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.13.在一次射擊訓練中,某位選手五次射擊的環(huán)數(shù)分別為5,8,7,6,1.則這位選手五次射擊環(huán)數(shù)的方差為.14.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是_____.15.如圖,△ABC的兩條高AD,BE相交于點F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.16.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F(xiàn)為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.17.拋物線y=mx2+2mx+5的對稱軸是直線_____.三、解答題(共7小題,滿分69分)18.(10分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為;題探究:(2)①當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為;②當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.19.(5分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.20.(8分)先化簡,然后從﹣1,0,2中選一個合適的x的值,代入求值.21.(10分)某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,商品名稱甲乙進價(元/件)80100售價(元/件)160240設(shè)其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使該商場獲得最大利潤的進貨方案.22.(10分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.23.(12分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.(1)求口袋中黃球的個數(shù);(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;24.(14分)某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設(shè)其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關(guān)于x的函數(shù)關(guān)系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)折疊的性質(zhì)明確對應(yīng)關(guān)系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內(nèi)角和外角之間的關(guān)系以及等腰三角形的性質(zhì).還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內(nèi)角和.(1)三角形的內(nèi)角和是180度.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關(guān)知識,及學生的邏輯思維能力.解答此類題最好動手操作.2、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.
∴在數(shù)軸上可表示為.故選B.“點睛”不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.3、B【解析】
根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進行判斷直線y=kx-k不經(jīng)過的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.【點睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).4、C【解析】試題解析:觀察二次函數(shù)圖象可知:∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、四象限,反比例函數(shù)的圖象在第二、四象限.故選D.5、C【解析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.6、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數(shù)為30分,故D錯誤;7、B【解析】試題解析:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.8、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故選D.9、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.10、D【解析】
本題主要考查二次函數(shù)的解析式【詳解】解:根據(jù)二次函數(shù)的解析式形式可得,設(shè)頂點坐標為(h,k),則二次函數(shù)的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數(shù)的頂點式,根據(jù)頂點的平移可得到二次函數(shù)平移后的解析式.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
設(shè)羊價為x錢,根據(jù)題意可得合伙的人數(shù)為或,由合伙人數(shù)不變可得方程.【詳解】設(shè)羊價為x錢,根據(jù)題意可得方程:,故答案為:.【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程.12、(,)或(﹣,﹣).【解析】
分點A、B、C的對應(yīng)點在第一象限和第三象限兩種情況,根據(jù)位似變換和正方形的性質(zhì)解答可得.【詳解】如圖,①當點A、B、C的對應(yīng)點在第一象限時,由位似比為1:2知點A′(0,)、B′(,0)、C′(,),∴該正方形的中心點的P的坐標為(,);②當點A、B、C的對應(yīng)點在第三象限時,由位似比為1:2知點A″(0,-)、B″(-,0)、C″(-,-),∴此時新正方形的中心點Q的坐標為(-,-),故答案為(,)或(-,-).【點睛】本題主要考查位似變換,解題的關(guān)鍵是熟練掌握位似變換的性質(zhì)和正方形的性質(zhì).13、2.【解析】試題分析:五次射擊的平均成績?yōu)?(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.14、﹣2≤a<﹣1.【解析】
先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關(guān)于x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.【點睛】本題考查了一元一次不等式組的整數(shù)解的應(yīng)用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關(guān)鍵.15、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.16、1【解析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.17、x=﹣1【解析】
根據(jù)拋物線的對稱軸公式可直接得出.【詳解】解:這里a=m,b=2m∴對稱軸x=故答案為:x=-1.【點睛】解答本題關(guān)鍵是識記拋物線的對稱軸公式x=.三、解答題(共7小題,滿分69分)18、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】
(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;(3)分兩種情況利用勾股定理和三角函數(shù)解答即可.【詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;①如圖2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣AP=3﹣;②如圖3:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD=AP?tan30°==1,∴DM=AP﹣AD=﹣1.故答案為;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì)全等三角形的判定和性質(zhì),分類討論的數(shù)學思想解決問題,判斷出△ADP≌△PFN是解本題的關(guān)鍵.19、(1)A種樹每棵2元,B種樹每棵80元;(2)當購買A種樹木1棵,B種樹木25棵時,所需費用最少,最少為8550元.【解析】
(1)設(shè)A種樹每棵x元,B種樹每棵y元,根據(jù)“購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元”列出方程組并解答;(2)設(shè)購買A種樹木為x棵,則購買B種樹木為(2-x)棵,根據(jù)“購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍”列出不等式并求得x的取值范圍,結(jié)合實際付款總金額=0.9(A種樹的金額+B種樹的金額)進行解答.【詳解】解:(1)設(shè)A種樹木每棵x元,B種樹木每棵y元,根據(jù)題意,得,解得,答:A種樹木每棵2元,B種樹木每棵80元.(2)設(shè)購買A種樹木x棵,則B種樹木(2-x)棵,則x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.設(shè)實際付款總額是y元,則y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y隨x增大而增大,∴當x=1時,y最小為18×1+73=8550(元).答:當購買A種樹木1棵,B種樹木25棵時,所需費用最少,為8550元.20、-.【解析】
先把分式除法轉(zhuǎn)換成乘法進行約分化簡,然后再找出分式的最小公分母通分進行化簡求值,在代入求值時要保證每一個分式的分母不能為1【詳解】解:原式=-=-===-.當x=-1或者x=1時分式?jīng)]有意義所以選擇當x=2時,原式=.【點睛】分式的化簡求值是此題的考點,需要特別注意的是分式的分母不能為1.21、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應(yīng)購進甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據(jù)總利潤=(甲的售價-甲的進價)×購進甲的數(shù)量+(乙的售價-乙的進價)×購進乙的數(shù)量代入列關(guān)系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結(jié)論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關(guān)系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當50<a<60時,a﹣60<0,y隨x的增大而減小,∴當x=100時,y有最大利潤,即商場應(yīng)購進甲商品100件,乙商品100件,獲利最大,②當a=60時,a﹣60=0,y=28000,即商場應(yīng)購進甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時,獲利最大,③當60<a<70時,a﹣60>0,y隨x的增大而增大,∴當x=120時,y有最大利潤,即商場應(yīng)購進甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數(shù)和一元一次不等式的綜合應(yīng)用,屬于銷售利潤問題,在此類題中,要明確售價、進價、利潤的關(guān)系式:單件利潤=售價-進價,總利潤=單個利潤×數(shù)量;認真讀題,弄清題中的每一個條件;對于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.22、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 與人合伙開廠合同范本
- 住宅工程承建合同范例
- 代運營咨詢合同范本
- 文化用品行業(yè)品牌公關(guān)危機應(yīng)對考核試卷
- 出租裝修名宿合同范本
- 制漿造紙機械的智能化生產(chǎn)線設(shè)計考核試卷
- 沖壓模具簽約合同范本
- 勞務(wù)焊接施工合同范本
- 信息設(shè)備購買合同范本
- 供熱換熱站施工合同范本
- 義務(wù)教育物理課程標準(2022年版)測試題文本版(附答案)
- 人工智能在地理信息系統(tǒng)中的應(yīng)用
- 第7章-無人機法律法規(guī)
- 藥劑科基本藥物處方用藥狀況點評工作表
- 拆遷征收代理服務(wù)投標方案
- 完形療法概述
- 說課的技巧和方法專題講座
- SL631-637-2012-水利水電工程單元工程施工質(zhì)量驗收評定標準
- 監(jiān)理質(zhì)量管理講義監(jiān)理工作的基本知識
- 煙花爆竹考試真題模擬匯編(共758題)
- 四年級數(shù)學上冊口算天天練4
評論
0/150
提交評論