![2022-2023學(xué)年安徽師范大學(xué)附中數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁](http://file4.renrendoc.com/view12/M01/06/0C/wKhkGWa3-wCADPQVAAHDXoKhf0A327.jpg)
![2022-2023學(xué)年安徽師范大學(xué)附中數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁](http://file4.renrendoc.com/view12/M01/06/0C/wKhkGWa3-wCADPQVAAHDXoKhf0A3272.jpg)
![2022-2023學(xué)年安徽師范大學(xué)附中數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁](http://file4.renrendoc.com/view12/M01/06/0C/wKhkGWa3-wCADPQVAAHDXoKhf0A3273.jpg)
![2022-2023學(xué)年安徽師范大學(xué)附中數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁](http://file4.renrendoc.com/view12/M01/06/0C/wKhkGWa3-wCADPQVAAHDXoKhf0A3274.jpg)
![2022-2023學(xué)年安徽師范大學(xué)附中數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁](http://file4.renrendoc.com/view12/M01/06/0C/wKhkGWa3-wCADPQVAAHDXoKhf0A3275.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.2.若函數(shù)的圖象經(jīng)過點(diǎn),則函數(shù)圖象的一條對(duì)稱軸的方程可以為()A. B. C. D.3.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.4.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.5.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.6.若復(fù)數(shù),則()A. B. C. D.207.已知向量,,則與的夾角為()A. B. C. D.8.已知,,由程序框圖輸出的為()A.1 B.0 C. D.9.命題:的否定為A. B.C. D.10.已知全集,集合,則()A. B. C. D.11.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.12.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.4二、填空題:本題共4小題,每小題5分,共20分。13.為了了解一批產(chǎn)品的長度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進(jìn)行檢測(cè),如圖是檢測(cè)結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為__________.14.如圖,己知半圓的直徑,點(diǎn)是弦(包含端點(diǎn),)上的動(dòng)點(diǎn),點(diǎn)在弧上.若是等邊三角形,且滿足,則的最小值為___________.15.如圖,直線是曲線在處的切線,則________.16.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.18.(12分)已知橢圓的焦距是,點(diǎn)是橢圓上一動(dòng)點(diǎn),點(diǎn)是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)是拋物線上兩點(diǎn),且處的切線相互垂直,直線與橢圓相交于兩點(diǎn),求的面積的最大值.19.(12分)如圖1,在邊長為4的正方形中,是的中點(diǎn),是的中點(diǎn),現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.20.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.22.(10分)已知中,內(nèi)角所對(duì)邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.2、B【解析】
由點(diǎn)求得的值,化簡(jiǎn)解析式,根據(jù)三角函數(shù)對(duì)稱軸的求法,求得的對(duì)稱軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對(duì)稱軸的求法,屬于中檔題.3、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.4、D【解析】
由圖象可以求出周期,得到,根據(jù)圖象過點(diǎn)可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點(diǎn),所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點(diǎn)法”求函數(shù)解析式,屬于中檔題.5、A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號(hào),結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對(duì)稱,,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號(hào),考查分析問題和解決問題的能力,屬于中等題.6、B【解析】
化簡(jiǎn)得到,再計(jì)算模長得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.7、B【解析】
由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.8、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點(diǎn):1、程序框圖;2、定積分.9、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.10、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.11、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)?,所?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.12、C【解析】
計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.二、填空題:本題共4小題,每小題5分,共20分。13、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點(diǎn)睛:頻率分布直方圖的縱坐標(biāo)為,因此每一個(gè)小矩形的面積表示樣本個(gè)體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時(shí)常犯的錯(cuò)誤.14、1【解析】
建系,設(shè),表示出點(diǎn)坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點(diǎn)建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時(shí),取得最小值1.故答案為:1.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算,坐標(biāo)運(yùn)算,屬于中檔題.15、.【解析】
求出切線的斜率,即可求出結(jié)論.【詳解】由圖可知直線過點(diǎn),可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.16、【解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對(duì)題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時(shí)點(diǎn)的位置.建立空間直角坐標(biāo)系,通過平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫嫫矫媸钦叫?,所以平?因?yàn)槠矫?,所?因?yàn)辄c(diǎn)在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點(diǎn)位于的中點(diǎn)時(shí),的面積最大,三棱錐的體積也最大.不妨設(shè),記中點(diǎn)為,以為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn)的坐標(biāo),表達(dá)出直線的斜率之積,再根據(jù)三點(diǎn)均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達(dá)式列式求解即可.(Ⅱ)設(shè)直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達(dá)出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設(shè),,則,又,,故,即,故,又,故.故橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)設(shè)直線的方程為,,由,故,又,故,因?yàn)樘幍那芯€相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達(dá)定理有設(shè),則.當(dāng)且僅當(dāng)時(shí)取等號(hào).故的面積的最大值為.【點(diǎn)睛】本題主要考查了根據(jù)橢圓上的點(diǎn)坐標(biāo)滿足的關(guān)系式求解橢圓基本量求方程的方法,同時(shí)也考查了拋物線的切線問題以及橢圓中面積的最值問題,需要根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,再換元利用基本不等式求解.屬于難題.19、(1)證明見解析;(2).【解析】
(1)利用線面平行的定義證明即可(2)取的中點(diǎn),并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,利用坐標(biāo)運(yùn)算進(jìn)行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點(diǎn),所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點(diǎn),并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個(gè)法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎(chǔ)題20、(1);(2)見解析.【解析】
(1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)?,則在上恒成立等價(jià)于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時(shí)總有又時(shí),在上總有解綜上,函數(shù)與總存在公切線.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.21、(1)線的普通方程為,曲線的直角坐標(biāo)方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進(jìn)而利用即可化為極坐標(biāo)方程,同理可得曲線C2的直角坐標(biāo)方程;
(2)由過的圓心,得得,設(shè),,代入中即可得解.試題解析:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 杭州浙江杭州拱墅區(qū)大關(guān)上塘街道社區(qū)衛(wèi)生服務(wù)中心招聘編外聘用人員筆試歷年參考題庫附帶答案詳解
- 2025年中國不銹鋼絲清潔球市場(chǎng)調(diào)查研究報(bào)告
- 2025至2031年中國鍍鎳快速填平劑行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年聚丙烯塑編布項(xiàng)目可行性研究報(bào)告
- 2025年著色均勻機(jī)項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國球形水箱行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年模擬型霍爾傳感器項(xiàng)目可行性研究報(bào)告
- 2025年無刷同步發(fā)電機(jī)項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國安全知識(shí)考試系統(tǒng)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年固定式排球柱項(xiàng)目可行性研究報(bào)告
- 消防安全一懂三會(huì)四能
- 建筑施工現(xiàn)場(chǎng)安全警示(案例)
- 起重吊裝工程安全監(jiān)理細(xì)則模版(3篇)
- 2025年中考數(shù)學(xué)一輪教材復(fù)習(xí)-第六章 圓 與圓有關(guān)的概念及性質(zhì)
- 《VAVE價(jià)值工程》課件
- 四川政采評(píng)審專家入庫考試基礎(chǔ)題復(fù)習(xí)試題及答案(一)
- 分享二手房中介公司的薪酬獎(jiǎng)勵(lì)制度
- 安徽省2022年中考道德與法治真題試卷(含答案)
- GB 4793-2024測(cè)量、控制和實(shí)驗(yàn)室用電氣設(shè)備安全技術(shù)規(guī)范
- 廣電雙向網(wǎng)改造技術(shù)建議書
- 項(xiàng)目人員管理方案
評(píng)論
0/150
提交評(píng)論