




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學生的成績,并根據這2000名學生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內的學生人數(shù)為()A.800 B.1000 C.1200 D.16002.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.3.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.44.已知為虛數(shù)單位,若復數(shù)滿足,則()A. B. C. D.5.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內隨機取一點,則該點取自陰影區(qū)域內(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.6.設等差數(shù)列的前項和為,若,則()A.10 B.9 C.8 D.77.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.68.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.9.甲、乙、丙、丁四位同學利用暑假游玩某風景名勝大峽谷,四人各自去景區(qū)的百里絕壁、千丈瀑布、原始森林、遠古村寨四大景點中的一個,每個景點去一人.已知:①甲不在遠古村寨,也不在百里絕壁;②乙不在原始森林,也不在遠古村寨;③“丙在遠古村寨”是“甲在原始森林”的充分條件;④丁不在百里絕壁,也不在遠古村寨.若以上語句都正確,則游玩千丈瀑布景點的同學是()A.甲 B.乙 C.丙 D.丁10.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.11.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.12.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數(shù)是()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.14.在中,,,,則________,的面積為________.15.若且時,不等式恒成立,則實數(shù)a的取值范圍為________.16.展開式中的系數(shù)為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.18.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.19.(12分)在世界讀書日期間,某地區(qū)調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮(zhèn)居民有100人,農村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮(zhèn)居民農村居民合計經常閱讀10030不經常閱讀合計200(2)調查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機選取2人作交流發(fā)言,求被選中的2位居民都是經常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.21.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.22.(10分)在平面直角坐標系xoy中,曲線C的方程為.以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)寫出曲線C的極坐標方程,并求出直線l與曲線C的交點M,N的極坐標;(2)設P是橢圓上的動點,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由圖可列方程算得a,然后求出成績在內的頻率,最后根據頻數(shù)=總數(shù)×頻率可以求得成績在內的學生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內的頻率,所以成績在內的學生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應用,屬基礎題.2.B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.3.A【解析】
根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.4.A【解析】分析:題設中復數(shù)滿足的等式可以化為,利用復數(shù)的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數(shù)的四則運算和復數(shù)概念中的共軛復數(shù),屬于基礎題.5.C【解析】令圓的半徑為1,則,故選C.6.B【解析】
根據題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數(shù)列的求和,意在考查學生的計算能力.7.B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.8.B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應填?故選:.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.9.D【解析】
根據演繹推理進行判斷.【詳解】由①②④可知甲乙丁都不在遠古村寨,必有丙同學去了遠古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景點的同學是丁.故選:D.【點睛】本題考查演繹推理,掌握演繹推理的定義是解題基礎.10.B【解析】
據題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據坐標形式下向量的數(shù)量積運算計算出結果.【詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.11.C【解析】
根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.12.B【解析】
通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關系,考查了運算能力,屬于基礎題.14.【解析】
利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎題.15.【解析】
將不等式兩邊同時平方進行變形,然后得到對應不等式組,對的取值進行分類,將問題轉化為二次函數(shù)在區(qū)間上恒正、恒負時求參數(shù)范圍,列出對應不等式組,即可求解出的取值范圍.【詳解】因為,所以,所以,所以,所以或,當時,對且不成立,當時,取,顯然不滿足,所以,所以,解得;當時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點睛】本題考查根據不等式恒成立求解參數(shù)范圍,難度較難.根據不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨分離出來,再以函數(shù)的最值與參數(shù)的大小關系求解出參數(shù)范圍.16.30【解析】
先將問題轉化為二項式的系數(shù)問題,利用二項展開式的通項公式求出展開式的第項,令的指數(shù)分別等于2,4,求出特定項的系數(shù).【詳解】由題可得:展開式中的系數(shù)等于二項式展開式中的指數(shù)為2和4時的系數(shù)之和,由于二項式的通項公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.【點睛】本題考查利用二項式展開式的通項公式解決二項展開式的特定項的問題,考查學生的轉化能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設,則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標系.在等腰梯形中,可得.則.那么設平面的法向量為,則有,即,取,得.設與平面所成的角為,則.所以與平面所成角的正弦值為.【點睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.19.(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】
(1)根據題中數(shù)據得到列聯(lián)表,然后計算出,與臨界值表中的數(shù)據對照后可得結論;(2)由題意得概率為古典概型,根據古典概型概率公式計算可得所求.【詳解】(1)由題意可得:城鎮(zhèn)居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)在城鎮(zhèn)居民140人中,經常閱讀的有100人,不經常閱讀的有40人.采取分層抽樣抽取7人,則其中經常閱讀的有5人,記為、、、、;不經常閱讀的有2人,記為、.從這7人中隨機選取2人作交流發(fā)言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經常閱讀居民的情況有種,所求概率為.【點睛】本題主要考查古典概型的概率計算,以及獨立性檢驗的應用,利用列舉法是解決本題的關鍵,考查學生的計算能力.對于古典概型,要求事件總數(shù)是可數(shù)的,滿足條件的事件個數(shù)可數(shù),使得滿足條件的事件個數(shù)除以總的事件個數(shù)即可,屬于中檔題.20.(1)見解析(2)(3)見解析【解析】
(1)令可得,即.得到,再利用通項公式和前n項和的關系求解,(2)由(1)知,.設等比數(shù)列的公比為,所以,再根據恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當時,所以.顯然當時,滿足上式.所以.,所以數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 方艙醫(yī)院設計導則
- 健康交友課件
- 健康五兄弟課件
- 疾病病因概念解析
- 畢業(yè)設計答辯致謝詞
- 非急救醫(yī)療轉運服務規(guī)范體系
- T/SHPTA 087-2024玻纖增強聚碳酸酯塑料粒子
- T/SHPTA 071.1-2023高壓電纜附件用橡膠材料第1部分:絕緣橡膠材料
- 2025年金剛石拉絲模項目規(guī)劃申請報告
- 2025年汽車防銹項目規(guī)劃申請報告模板
- 遙感地質勘查服務企業(yè)數(shù)字化轉型與智慧升級戰(zhàn)略研究報告
- 快手開店合同協(xié)議
- 2025年-天津市安全員-B證考試題庫附答案
- 2025至2030年中國儲能變流器(PCS)產業(yè)投資規(guī)劃及前景預測報告
- 高考英語應用文寫作 -主題:人工智能利弊
- GB/T 7573-2025紡織品水萃取液pH值的測定
- 反恐應急演練方案腳本
- 2024年山東棗莊科技職業(yè)學院棗莊工程技師學院招聘筆試真題
- 校園廣播系統(tǒng)投標方案
- 2025年標準課件《維護祖國統(tǒng)一》
- 區(qū)委巡察辦2025年上半年工作總結
評論
0/150
提交評論