




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義是上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.92.已知向量與的夾角為,,,則()A. B.0 C.0或 D.3.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度4.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.5.已知復數(shù)滿足:,則的共軛復數(shù)為()A. B. C. D.6.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.57.已知實數(shù),則的大小關(guān)系是()A. B. C. D.8.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.9.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.10.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.311.若函數(shù)在時取得最小值,則()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.14.在的展開式中,各項系數(shù)之和為,則展開式中的常數(shù)項為__________________.15.已知點P是直線y=x+1上的動點,點Q是拋物線y=x2上的動點.設點M為線段PQ的中點,O為原點,則16.若關(guān)于的不等式在時恒成立,則實數(shù)的取值范圍是_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.18.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設.(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值.19.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.20.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.22.(10分)在極坐標系中,已知曲線,.(1)求曲線、的直角坐標方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當時,,
令,則,解得或1,
又∵函數(shù)是定義域為的奇函數(shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個,
故選D.【點睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.2.B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.3.B【解析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.4.B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).5.B【解析】
轉(zhuǎn)化,為,利用復數(shù)的除法化簡,即得解【詳解】復數(shù)滿足:所以故選:B【點睛】本題考查了復數(shù)的除法和復數(shù)的基本概念,考查了學生概念理解,數(shù)學運算的能力,屬于基礎題.6.B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.7.B【解析】
根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.8.A【解析】
畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.9.D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.10.A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學生的運算能力,是一道容易題.11.D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題.12.B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.14.【解析】
利用展開式各項系數(shù)之和求得的值,由此寫出展開式的通項,令指數(shù)為零求得參數(shù)的值,代入通項計算即可得解.【詳解】的展開式各項系數(shù)和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數(shù)項為.故答案為:.【點睛】本題考查二項展開式中常數(shù)項的計算,涉及二項展開式中各項系數(shù)和的計算,考查計算能力,屬于基礎題.15.3【解析】
過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當直線相切時距離最小,計算得到答案.【詳解】如圖所示:過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點M為線段PQ的中點,故M在直線y=x+38時距離最小,故故答案為:32【點睛】本題考查了拋物線中距離的最值問題,轉(zhuǎn)化為切線問題是解題的關(guān)鍵.16.【解析】
利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進而求得的取值范圍?!驹斀狻坑傻?,兩邊同除以,得到,,,設,,由函數(shù)在上遞減,所以,故實數(shù)的取值范圍是?!军c睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關(guān)系式,利用點到直線的距離公式即可得到,.當時,設直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質(zhì),結(jié)合當時,四邊形是矩形,即可得出的最大值.【詳解】(1)設,則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個公共點知,,化簡得:.
設,,當時,設直線的傾斜角為,則,,,,∴當時,,,.當時,四邊形是矩形,.
所以四邊形面積的最大值為2.【點睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.18.(1),;(2)米.【解析】
(1)過點作于點再在中利用正弦定理求解,再根據(jù)求解,進而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設,求導分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當時,單調(diào)遞增;當時,單調(diào)遞減,又,當時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數(shù)在實際中的應用,需要根據(jù)題意建立角度與長度間的關(guān)系,進而求導分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對應的最值即可.屬于難題.19.(1)見解析(2)見證明【解析】
(1)對函數(shù)求導,分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設,用導數(shù)方法判斷出的單調(diào)性,進而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域為,,令,得或.①當時,時,,函數(shù)單調(diào)遞減;時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為.②當時,時,,函數(shù)單調(diào)遞減;或時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為,.③當時,時,,函數(shù)單調(diào)遞增;此時,的減區(qū)間為.綜上,當時,的減區(qū)間為,增區(qū)間為:當時,的減區(qū)間為,增區(qū)間為.;當時,增區(qū)間為.(2)證明:由題意及導數(shù)的幾何意義,得由(1)中得.易知,導函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因為,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點睛】本題主要考查導數(shù)的應用,通常需要對函數(shù)求導,利用導數(shù)的方法研究函數(shù)的單調(diào)性以及函數(shù)極值等即可,屬于常考題型.20.(1)有的把握認為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】
(1)根據(jù)列聯(lián)表和獨立性檢驗的公式計算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年春蘇教版生物八年級下冊教學課件 第26章 第3節(jié) 關(guān)注健康
- 2025至2030年中國PVC風筒布數(shù)據(jù)監(jiān)測研究報告
- 鉬肥企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 冰雪運動器材企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 兒科疾病創(chuàng)新藥物行業(yè)跨境出海戰(zhàn)略研究報告
- 高爐煤氣企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 布邊紗企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 掛繩夾頭企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 已縫制整張毛皮及其塊、片企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 亞麻籽堅果混合零食行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年城市軌道交通運營行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025年河南質(zhì)量工程職業(yè)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年江西生物科技職業(yè)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2024-2025學年第二學期學校全面工作計劃
- 2025年中國spa行業(yè)市場全景分析及投資前景展望報告
- GB 45187-2024墜落防護動力升降防墜落裝置
- 2024年青島港灣職業(yè)技術(shù)學院高職單招數(shù)學歷年參考題庫含答案解析
- 《信息技術(shù)(拓展模塊)》高職全套教學課件
- 環(huán)保行業(yè)環(huán)保管理制度環(huán)保責任落實制度
- 2025年山東菏投建設集團招聘筆試參考題庫含答案解析
- 市政質(zhì)量員繼續(xù)教育考試題庫集(含答案)
評論
0/150
提交評論