新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)7-2 橢圓及其應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)7-2 橢圓及其應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)7-2 橢圓及其應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)7-2 橢圓及其應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)7-2 橢圓及其應(yīng)用(8題型+滿分技巧+限時(shí)檢測(cè))(解析版)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

熱點(diǎn)7-2橢圓及其應(yīng)用橢圓是圓錐曲線中的重要內(nèi)容,是高考命題的重點(diǎn)??荚囍兄饕疾闄E圓的概念性質(zhì)等基礎(chǔ)知識(shí),選擇、填空、解答題都會(huì)出現(xiàn)。與向量等知識(shí)結(jié)合綜合考查也是高考命題的一個(gè)趨勢(shì),在突破重難點(diǎn)上要注意。基礎(chǔ)、拔高、分層訓(xùn)練,更為重要的是掌握?qǐng)A錐曲線的解題的思想方法,才能做到靈活應(yīng)對(duì)?!绢}型1橢圓的定義及概念辨析】滿分技巧在橢圓的定義中條件SKIPIF1<0不能少,這是根據(jù)三角形中的兩邊之和大于第三邊得出來的.否則:①當(dāng)SKIPIF1<0時(shí),其軌跡為線段SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),其軌跡不存在.【例1】(2021·高二課時(shí)練習(xí))已知SKIPIF1<0,SKIPIF1<0是兩個(gè)定點(diǎn),且SKIPIF1<0(SKIPIF1<0是正常數(shù)),動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡是()A.橢圓B.線段C.橢圓或線段D.直線【答案】C【解析】因?yàn)镾KIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)動(dòng)點(diǎn)SKIPIF1<0的軌跡是橢圓;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)動(dòng)點(diǎn)SKIPIF1<0的軌跡是線段SKIPIF1<0.故選:C.【變式1-1】(2023·貴州黔東南·高三??茧A段練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),若SKIPIF1<0,則SKIPIF1<0()A.1B.2C.4D.5【答案】C【解析】因?yàn)镾KIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形.所以SKIPIF1<0.由橢圓的定義得SKIPIF1<0.所以SKIPIF1<0.故選:C【變式1-2】(2023·陜西西安·??既#┮阎獧E圓SKIPIF1<0的兩焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn)且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0.因?yàn)闄E圓SKIPIF1<0的兩焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn)且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B【變式1-3】(2023·江西南昌·高三南昌市第三中學(xué)??茧A段練習(xí))一動(dòng)圓SKIPIF1<0與圓SKIPIF1<0外切,與圓SKIPIF1<0內(nèi)切,則動(dòng)圓圓心SKIPIF1<0點(diǎn)的軌跡方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由題意可知:圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0;圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0;因?yàn)镾KIPIF1<0,可知圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切于點(diǎn)SKIPIF1<0,顯然圓心SKIPIF1<0不能與點(diǎn)SKIPIF1<0重合,設(shè)圓SKIPIF1<0的半徑為SKIPIF1<0,由題意可知:SKIPIF1<0,則SKIPIF1<0,可知點(diǎn)M的軌跡是以SKIPIF1<0為焦點(diǎn)的橢圓(點(diǎn)SKIPIF1<0除外),且SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0點(diǎn)的軌跡方程為SKIPIF1<0.故選:D.【變式1-4】(2023·全國(guó)·高三專題練習(xí))點(diǎn)M在橢圓SKIPIF1<0上,SKIPIF1<0是橢圓的左焦點(diǎn),O為坐標(biāo)原點(diǎn),N是SKIPIF1<0中點(diǎn),且ON長(zhǎng)度是4,則SKIPIF1<0的長(zhǎng)度是__________.【答案】SKIPIF1<0【解析】設(shè)橢圓右焦點(diǎn)為SKIPIF1<0,連接SKIPIF1<0由已知得SKIPIF1<0,則SKIPIF1<0因?yàn)镹是SKIPIF1<0中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,再根據(jù)橢圓定義得SKIPIF1<0【題型2利用定義求距離和差最值】滿分技巧利用橢圓定義求距離和差的最值的兩種方法:(1)抓住|PF1|與|PF2|之和為定值,可聯(lián)系到利用基本不等式求|PF1|·|PF2|的最值;(2)利用定義|PF1|+|PF2|=2a轉(zhuǎn)化或變形,借助三角形性質(zhì)求最值【例2】(2023·江西撫州·高三樂安縣第二中學(xué)校考期中)已知SKIPIF1<0是橢圓SKIPIF1<0的左焦點(diǎn),SKIPIF1<0是橢圓上一動(dòng)點(diǎn),若SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】橢圓SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖,設(shè)橢圓的右焦點(diǎn)為SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0,由圖形知,當(dāng)SKIPIF1<0在直線SKIPIF1<0(與橢圓的交點(diǎn))上時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0不在直線SKIPIF1<0(與橢圓的交點(diǎn))上時(shí),根據(jù)三角形的兩邊之差小于第三邊有,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0在SKIPIF1<0的延長(zhǎng)線(與橢圓的交點(diǎn))上時(shí),SKIPIF1<0取得最小值SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.故選:SKIPIF1<0.【變式2-1】(2023·江蘇南通·統(tǒng)考三模)已知SKIPIF1<0為橢圓SKIPIF1<0:SKIPIF1<0的右焦點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),SKIPIF1<0為圓SKIPIF1<0:SKIPIF1<0上一點(diǎn),則SKIPIF1<0的最大值為()A.5B.6C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】依題意SKIPIF1<0,設(shè)橢圓SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0三點(diǎn)共線,且SKIPIF1<0在SKIPIF1<0之間時(shí)等號(hào)成立.而SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0四點(diǎn)共線,且SKIPIF1<0在SKIPIF1<0之間,SKIPIF1<0是SKIPIF1<0的延長(zhǎng)線與圓SKIPIF1<0的交點(diǎn)時(shí)等號(hào)成立.故選:D【變式2-2】(2023·全國(guó)·高二課時(shí)練習(xí))已知點(diǎn)P為橢圓SKIPIF1<0上任意一點(diǎn),點(diǎn)M、N分別為SKIPIF1<0和SKIPIF1<0上的點(diǎn),則SKIPIF1<0的最大值為()A.4B.5C.6D.7【答案】C【解析】設(shè)圓SKIPIF1<0和圓SKIPIF1<0的圓心分別為SKIPIF1<0,半徑分別為SKIPIF1<0.則橢圓SKIPIF1<0的焦點(diǎn)為SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0分別在SKIPIF1<0的延長(zhǎng)線上時(shí)取等號(hào).此時(shí)SKIPIF1<0最大值為SKIPIF1<0.故選:C.【變式2-3】(2022·全國(guó)·高三校聯(lián)考階段練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)Q的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】根據(jù)橢圓的定義可得,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),取值最大或最小.由已知得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0點(diǎn)位于圖中SKIPIF1<0時(shí),根據(jù)三角形三邊關(guān)系取值最大.SKIPIF1<0.當(dāng)SKIPIF1<0點(diǎn)位于圖中SKIPIF1<0時(shí),根據(jù)三角形三邊關(guān)系取值最大.SKIPIF1<0.故答案為:SKIPIF1<0.【變式2-4】(2023·河北唐山·開灤第二中學(xué)??家荒#┮阎獧E圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)P在橢圓C上,且SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0/SKIPIF1<0【解析】由橢圓方程可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,如圖,連接SKIPIF1<0并延長(zhǎng),交橢圓于P,則SKIPIF1<0,(當(dāng)且僅當(dāng)點(diǎn)SKIPIF1<0三點(diǎn)共線時(shí),且點(diǎn)SKIPIF1<0位于第三象限時(shí)取等號(hào))此時(shí)SKIPIF1<0取最大值為SKIPIF1<0【題型3橢圓標(biāo)準(zhǔn)方程的求解】滿分技巧1、利用待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程的步驟(1)定位:確定焦點(diǎn)在那個(gè)坐標(biāo)軸上;(2)定量:依據(jù)條件及SKIPIF1<0確定SKIPIF1<0的值;(3)寫出標(biāo)準(zhǔn)方程;2、求橢圓方程時(shí),若沒有指明焦點(diǎn)位置,一般可設(shè)所求方程為SKIPIF1<0;3、當(dāng)橢圓過兩定點(diǎn)時(shí),常設(shè)橢圓方程為SKIPIF1<0,將點(diǎn)的坐標(biāo)代入,解方程組求得系數(shù)。【例3】(2022·湖北十堰·高三統(tǒng)考期末)已知曲線SKIPIF1<0,則“SKIPIF1<0”是“曲線C是橢圓”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件【答案】C【解析】若曲線SKIPIF1<0是橢圓,則有:SKIPIF1<0解得:SKIPIF1<0,且SKIPIF1<0故“SKIPIF1<0”是“曲線C是橢圓”的必要不充分條件故選:C【變式3-1】(2023·云南昆明·高三??茧A段練習(xí))已知方程SKIPIF1<0表示焦點(diǎn)在SKIPIF1<0軸上的橢圓,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】方程SKIPIF1<0表示焦點(diǎn)在SKIPIF1<0軸上的橢圓,則SKIPIF1<0,解得SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【變式3-2】(2023·黑龍江佳木斯·高三校考開學(xué)考試)已知直線SKIPIF1<0經(jīng)過焦點(diǎn)在坐標(biāo)軸上的橢圓的兩個(gè)頂點(diǎn),則該橢圓的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】令SKIPIF1<0,可得SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0.則由已知可得,橢圓的兩個(gè)頂點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以橢圓的焦點(diǎn)在SKIPIF1<0軸上.設(shè)橢圓的方程為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以橢圓的方程為SKIPIF1<0.故選:C.【變式3-3】(2022·廣西桂林·高三??茧A段練習(xí))已知橢圓SKIPIF1<0:SKIPIF1<0右焦點(diǎn)為SKIPIF1<0,其上下頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,則該橢圓的標(biāo)準(zhǔn)方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】根據(jù)題意可知,SKIPIF1<0,SKIPIF1<0;所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0在橢圓中,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0即橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:D.【變式3-4】(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左頂點(diǎn)為A,上頂點(diǎn)為B,左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,延長(zhǎng)SKIPIF1<0交橢圓E于點(diǎn)P.若點(diǎn)A到直線SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0的周長(zhǎng)為16,則橢圓E的標(biāo)準(zhǔn)方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由題意,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,所以點(diǎn)A到直線SKIPIF1<0的距離SKIPIF1<0①.由SKIPIF1<0的周長(zhǎng)為16,得SKIPIF1<0,即a+c=8②,聯(lián)立①②,解得SKIPIF1<0③.因?yàn)镾KIPIF1<0,所以SKIPIF1<0④.聯(lián)立②④,解得a=6,c=2,所以SKIPIF1<0,故橢圓E的標(biāo)準(zhǔn)方程為是SKIPIF1<0.故選:B.【題型4橢圓的焦點(diǎn)三角形問題】滿分技巧一般利用橢圓的定義、余弦定理和完全平方公式等知識(shí),建立AF1+AF2,AF12+性質(zhì)1:AF1+拓展:?AF1?ABF1性質(zhì)2:4c【例4】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0是橢圓SKIPIF1<0上的點(diǎn),SKIPIF1<0分別是橢圓的左、右焦點(diǎn),若SKIPIF1<0,則SKIPIF1<0的面積為【答案】SKIPIF1<0【解析】橢圓SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上的點(diǎn),SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由余弦定理得:SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.【變式4-1】(2023·陜西漢中·校聯(lián)考模擬預(yù)測(cè))設(shè)SKIPIF1<0為橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,若SKIPIF1<0,則SKIPIF1<0.【答案】2【解析】因橢圓方程為SKIPIF1<0,則SKIPIF1<0.因SKIPIF1<0,則SKIPIF1<0.又由橢圓定義,可得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.【變式4-2】(2023·浙江寧波·統(tǒng)考一模)設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0的焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】如下圖所示:不妨設(shè)SKIPIF1<0,根據(jù)橢圓定義可得SKIPIF1<0,SKIPIF1<0;由余弦定理可知SKIPIF1<0;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,即可得SKIPIF1<0,解得SKIPIF1<0;又SKIPIF1<0,即SKIPIF1<0;所以可得SKIPIF1<0;故選:C【變式4-3】(2023·全國(guó)·模擬預(yù)測(cè))已知橢圓SKIPIF1<0的上、下焦點(diǎn)分別為SKIPIF1<0,短半軸長(zhǎng)為SKIPIF1<0,離心率為SKIPIF1<0,直線SKIPIF1<0交該橢圓于SKIPIF1<0兩點(diǎn),且SKIPIF1<0的周長(zhǎng)是SKIPIF1<0的周長(zhǎng)的3倍,則SKIPIF1<0的周長(zhǎng)為()A.6B.5C.7D.9【答案】B【解析】由題意可得SKIPIF1<0,由離心率為SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,易知SKIPIF1<0的周長(zhǎng)SKIPIF1<0,SKIPIF1<0的周長(zhǎng)SKIPIF1<0,由橢圓的定義得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:B.【變式4-4】(2023·河北秦皇島·高三校聯(lián)考開學(xué)考試)已知SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,若SKIPIF1<0的離心率SKIPIF1<0,則使SKIPIF1<0為直角三角形的點(diǎn)SKIPIF1<0有()個(gè)A.2B.4C.6D.8【答案】D【解析】由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,因此以SKIPIF1<0為直徑作圓與SKIPIF1<0必有四個(gè)不同的交點(diǎn),因此SKIPIF1<0中以SKIPIF1<0的三角形有四個(gè),除此之外以SKIPIF1<0為直角,SKIPIF1<0為直角的SKIPIF1<0各有兩個(gè),所以存在使SKIPIF1<0為直角三角形的點(diǎn)SKIPIF1<0共有8個(gè).故選:D【題型5求橢圓的離心率與范圍】滿分技巧1、求橢圓離心率的3種方法(1)直接求出a,c來求解e.通過已知條件列方程組,解出a,c的值.(2)構(gòu)造a,c的齊次式,解出e.由已知條件得出關(guān)于a,c的二元齊次方程,然后轉(zhuǎn)化為關(guān)于離心率e的一元二次方程求解.(3)通過取特殊值或特殊位置,求出離心率.2、求橢圓離心率范圍的2種方法(1)幾何法:利用橢圓的幾何性質(zhì),設(shè)P(x0,y0)為橢圓eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)上一點(diǎn),則|x0|≤a,a-c≤|PF1|≤a+c等,建立不等關(guān)系,或者根據(jù)幾何圖形的臨界情況建立不等關(guān)系,適用于題設(shè)條件有明顯的幾何關(guān)系;(2)直接法:根據(jù)題目中給出的條件或根據(jù)已知條件得出不等關(guān)系,直接轉(zhuǎn)化為含有a,b,c的不等關(guān)系式,適用于題設(shè)條件直接有不等關(guān)系。【例5】(2023·湖北·高三校聯(lián)考階段練習(xí))已知橢圓C:SKIPIF1<0的左右焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),若滿足SKIPIF1<0成等差數(shù)列,且SKIPIF1<0,則C的離心率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0得到SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由余弦定理得,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0為等邊三角形,則在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.故選:B.【變式5-1】(2023·浙江金華·校聯(lián)考模擬預(yù)測(cè))己知SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0分別為其左右焦點(diǎn),SKIPIF1<0為其右頂點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0成等比數(shù)列,則橢圓SKIPIF1<0的離心率為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,如圖所示,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,由橢圓定義得,SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0成等比數(shù)列,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0【變式5-2】(2023·湖南·高三校聯(lián)考階段練習(xí))已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,經(jīng)過SKIPIF1<0的直線交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),且SKIPIF1<0,則橢圓SKIPIF1<0的離心率為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.【變式5-3】(2023·江蘇淮安·高三淮陰中學(xué)校聯(lián)考階段練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),過SKIPIF1<0作SKIPIF1<0軸的垂線與橢圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0為鈍角三角形,則離心率SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】由SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),過SKIPIF1<0作SKIPIF1<0軸的垂線與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),可得SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0為鈍角三角形,則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0,即橢圓SKIPIF1<0的離心率的取值范圍為SKIPIF1<0.故選:A.【變式5-4】(2023·重慶·統(tǒng)考三模)已知SKIPIF1<0,SKIPIF1<0分別為橢圓的左右焦點(diǎn),P是橢圓上一點(diǎn),SKIPIF1<0,SKIPIF1<0,則橢圓離心率的取值范圍為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.由正弦定理可得,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.根據(jù)橢圓的定義可知,SKIPIF1<0,所以有SKIPIF1<0,所以有SKIPIF1<0SKIPIF1<0SKIPIF1<0.因?yàn)?,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0.【題型6橢圓的中點(diǎn)弦問題】滿分技巧解決橢圓中點(diǎn)弦問題的兩種方法:1、根與系數(shù)關(guān)系法:聯(lián)立直線方程和橢圓方程構(gòu)成方程組,消去一個(gè)未知數(shù),利用一元二次方程根與系數(shù)的關(guān)系以及中點(diǎn)坐標(biāo)公式解決;2、點(diǎn)差法:利用交點(diǎn)在曲線上,坐標(biāo)滿足方程,將交點(diǎn)坐標(biāo)分別代入橢圓方程,然后作差,構(gòu)造出中點(diǎn)坐標(biāo)和斜率的關(guān)系,具體如下:直線(不平行于軸)過橢圓()上兩點(diǎn)、,其中中點(diǎn)為,則有。證明:設(shè)、,則有,上式減下式得,∴,∴,∴。特殊的:直線(存在斜率)過橢圓()上兩點(diǎn)、,線段中點(diǎn)為,則有。【例6】(2023·全國(guó)·模擬預(yù)測(cè))已知O為坐標(biāo)原點(diǎn),橢圓C:SKIPIF1<0的右焦點(diǎn)為F,斜率為2的直線與橢圓C交于點(diǎn)A,B,且SKIPIF1<0,點(diǎn)D為線段AB的中點(diǎn),則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】解法一:由題意知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,同理可得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0,因?yàn)橹本€AB的斜率為2,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.解法二:由題意知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,同理可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.設(shè)直線AB的方程為SKIPIF1<0,與SKIPIF1<0聯(lián)立并整理得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.解法三:由題意知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,同理可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故選:D.【變式6-1】(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0外的一點(diǎn)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)),過點(diǎn)SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,若直線SKIPIF1<0的斜率之積為SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】如圖,取線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,則由題意可得,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.因?yàn)橹本€SKIPIF1<0的斜率之積為SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,兩式相減可得SKIPIF1<0SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【變式6-2】(2023·全國(guó)·高三專題練習(xí))已知橢圓C:SKIPIF1<0,若橢圓C上有不同的兩點(diǎn)關(guān)于直線SKIPIF1<0對(duì)稱,則實(shí)數(shù)m的取值范圍是.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0是橢圓C上關(guān)于直線l:SKIPIF1<0對(duì)稱的兩個(gè)點(diǎn),SKIPIF1<0是線段PQ的中點(diǎn),則SKIPIF1<0,兩式相減,得SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.∵點(diǎn)M應(yīng)在橢圓C的內(nèi)部,∴SKIPIF1<0,解得SKIPIF1<0.∴實(shí)數(shù)m的取值范圍是SKIPIF1<0.【變式6-3】(2023·重慶·統(tǒng)考模擬預(yù)測(cè))已知橢圓C:SKIPIF1<0,圓O:SKIPIF1<0,直線l與圓O相切于第一象限的點(diǎn)A,與橢圓C交于P,Q兩點(diǎn),與x軸正半軸交于點(diǎn)B.若SKIPIF1<0,則直線l的方程為.【答案】SKIPIF1<0【解析】取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,進(jìn)而SKIPIF1<0,設(shè)SKIPIF1<0,設(shè)直線上任意一點(diǎn)SKIPIF1<0,由于SKIPIF1<0是圓的切線,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0,由中點(diǎn)坐標(biāo)公式可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,兩式相減可得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,進(jìn)而SKIPIF1<0故直線l的方程為SKIPIF1<0,即SKIPIF1<0.【題型7直線與橢圓相交弦長(zhǎng)求解】滿分技巧求弦長(zhǎng)的兩種方法:(1)交點(diǎn)法:將直線的方程與橢圓的方程聯(lián)立,求出兩交點(diǎn)的坐標(biāo),然后運(yùn)用兩點(diǎn)間的距離公式來求.(2)根與系數(shù)的關(guān)系法:如果直線的斜率為k,被橢圓截得弦AB兩端點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),則弦長(zhǎng)公式為:【例7】(2023·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,焦距為SKIPIF1<0,斜率為SKIPIF1<0的直線l與橢圓SKIPIF1<0有兩個(gè)不同的交點(diǎn)SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】由題意得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴橢圓SKIPIF1<0的方程為SKIPIF1<0.由SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.聯(lián)立得SKIPIF1<0,得SKIPIF1<0,又直線SKIPIF1<0與橢圓SKIPIF1<0有兩個(gè)不同的交點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故當(dāng)SKIPIF1<0,即直線SKIPIF1<0過原點(diǎn)時(shí),SKIPIF1<0最大,最大值為SKIPIF1<0.【變式7-1】(2023·全國(guó)·高三專題練習(xí))過點(diǎn)SKIPIF1<0的直線l與橢圓SKIPIF1<0.交于A,B兩點(diǎn),若SKIPIF1<0的面積為SKIPIF1<0(O為坐標(biāo)原點(diǎn)),求直線l的方程.【答案】SKIPIF1<0【解析】顯然直線SKIPIF1<0不垂直于y軸,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0消去x得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0的面積為SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.【變式7-2】(2023·江蘇徐州·高三統(tǒng)考期中)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),當(dāng)SKIPIF1<0時(shí),求直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0【解析】(1)由題意,SKIPIF1<0,解得SKIPIF1<0,所以橢圓C的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)易知直線SKIPIF1<0的斜率不為0,設(shè)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,消去y,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以直線l的方程為SKIPIF1<0或SKIPIF1<0.【變式7-3】(2023·寧夏吳忠·高三青銅峽市高級(jí)中學(xué)校考階段練習(xí))已知橢圓的中心在原點(diǎn),焦點(diǎn)在SKIPIF1<0軸上,離心率為SKIPIF1<0,焦距為2.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的左焦點(diǎn)SKIPIF1<0,且斜率為SKIPIF1<0的直線SKIPIF1<0交橢圓于A,SKIPIF1<0兩點(diǎn),求SKIPIF1<0的面積.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由題意,設(shè)所求橢圓標(biāo)準(zhǔn)方程為:SKIPIF1<0,因?yàn)榻咕酁镾KIPIF1<0,SKIPIF1<0,又離心率SKIPIF1<0,SKIPIF1<0,再由SKIPIF1<0,所以橢圓標(biāo)準(zhǔn)方程為:SKIPIF1<0.(2)由(1)知:左焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0的方程為:SKIPIF1<0則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,由弦長(zhǎng)公式SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,SKIPIF1<0.【變式7-4】(2023·四川綿陽·高三四川省綿陽南山中學(xué)??茧A段練習(xí))設(shè)橢圓SKIPIF1<0的左右頂點(diǎn)分別為SKIPIF1<0,左右焦點(diǎn)SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0.(1)求橢圓方程.(2)若斜率為1的直線SKIPIF1<0交橢圓于A,B兩點(diǎn),與以SKIPIF1<0為直徑的圓交于C,D兩點(diǎn).若SKIPIF1<0,求直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由題意,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以橢圓方程為SKIPIF1<0.(2)設(shè)直線SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由題意,以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0,則圓心到直線SKIPIF1<0的距離SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,消去SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的方程為:SKIPIF1<0或SKIPIF1<0.【題型8直線與橢圓綜合問題】【例8】(2023·全國(guó)·模擬預(yù)測(cè))已知圓SKIPIF1<0,圓SKIPIF1<0,動(dòng)圓SKIPIF1<0與圓SKIPIF1<0和圓SKIPIF1<0均相切,且一個(gè)內(nèi)切、一個(gè)外切.(1)求動(dòng)圓圓心SKIPIF1<0的軌跡SKIPIF1<0的方程.(2)已知點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與軌跡SKIPIF1<0交于SKIPIF1<0兩點(diǎn),記直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)為SKIPIF1<0.試問:點(diǎn)SKIPIF1<0是否在一條定直線上?若在,求出該定直線;若不在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0;(2)點(diǎn)SKIPIF1<0恒在定直線SKIPIF1<0上【解析】(1)設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,圓SKIPIF1<0的半徑為SKIPIF1<0.由已知條件,得SKIPIF1<0.①當(dāng)動(dòng)圓SKIPIF1<0與圓SKIPIF1<0外切,與圓SKIPIF1<0內(nèi)切時(shí),SKIPIF1<0,從而SKIPIF1<0.②當(dāng)動(dòng)圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切,與圓SKIPIF1<0外切時(shí),SKIPIF1<0,從而SKIPIF1<0.綜上可知,圓心SKIPIF1<0的軌跡SKIPIF1<0是以SKIPIF1<0為焦點(diǎn),6為長(zhǎng)軸長(zhǎng)的橢圓.易得圓SKIPIF1<0與圓SKIPIF1<0交于點(diǎn)SKIPIF1<0與SKIPIF1<0,所以動(dòng)圓圓心SKIPIF1<0的軌跡SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0.聯(lián)立直線SKIPIF1<0與軌跡SKIPIF1<0的方程,得SKIPIF1<0消去SKIPIF1<0并整理,得SKIPIF1<0.所以SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論