版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應填入的條件是()A.B.C.D.2.數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數(shù)λ的最大值為()A. B. C. D.3.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.4.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.5.設正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.366.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.87.設為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.8.已知函數(shù),若,,,則a,b,c的大小關系是()A. B. C. D.9.已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個不同的零點,則實數(shù)的取值范圍為()A. B. C. D.10.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.11.若復數(shù)滿足,則的虛部為()A.5 B. C. D.-512.函數(shù)在上的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列{an}的前n項和為Sn,若a214.設實數(shù)x,y滿足,則點表示的區(qū)域面積為______.15.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.16.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點為,且,則雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.18.(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系.19.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.20.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.21.(12分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.22.(10分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據(jù)結果填寫判斷框,屬于基礎題.2.D【解析】
利用等差數(shù)列通項公式推導出λ,由d∈[1,2],能求出實數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時,實數(shù)λ取最大值為λ.故選D.【點睛】本題考查實數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.3.D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.4.C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.5.B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.6.B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.【點睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應用.7.C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎題.8.D【解析】
根據(jù)題意,求出函數(shù)的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點睛】本題考查函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎題.9.D【解析】
將原題等價轉(zhuǎn)化為方程在內(nèi)都有兩個不同的根,先求導,可判斷時,,是增函數(shù);當時,,是減函數(shù).因此,再令,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數(shù)可判斷當時,在上是增函數(shù);當時,在上是減函數(shù);則應滿足,再結合,構造函數(shù),求導即可求解;【詳解】函數(shù)在內(nèi)都有兩個不同的零點,等價于方程在內(nèi)都有兩個不同的根.,所以當時,,是增函數(shù);當時,,是減函數(shù).因此.設,,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數(shù);當時,在上是減函數(shù).因為,方程在內(nèi)有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點睛】本題考查由函數(shù)零點個數(shù)求解參數(shù)取值范圍問題,構造函數(shù)法,導數(shù)法研究函數(shù)增減性與最值關系,轉(zhuǎn)化與化歸能力,屬于難題10.B【解析】
將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎題.11.C【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.12.A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】試題分析:∵a2考點:等比數(shù)列性質(zhì)及求和公式14.【解析】
先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.15.【解析】
基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.16.【解析】
先根據(jù)橢圓得出焦距,結合橢圓的定義求出,結合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內(nèi)的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.18.(1)(2)點在曲線外.【解析】
(1)先消參化曲線的參數(shù)方程為普通方程,再化為極坐標方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關系.【詳解】(1)由曲線的參數(shù)方程為可得曲線的普通方程為,則曲線的極坐標方程為,即(2)由題,點是曲線上的一點,因為,所以,即,所以點在曲線外.【點睛】本題考查參數(shù)方程與普通方程的轉(zhuǎn)化,考查直角坐標方程與極坐標方程的轉(zhuǎn)化,考查點與圓的位置關系.19.(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標準方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入得,由直線參數(shù)方程的幾何意義可知,.20.(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.21.(1)(答案不唯一)(2)證明見解析【解析】
(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO 20679:2025 EN Ships and marine technology - Marine environment protection - Testing of ship biofouling in-water cleaning systems
- 我的家鄉(xiāng)敘事課程設計
- 弦樂小夜曲課程設計
- 中西醫(yī)執(zhí)業(yè)醫(yī)師模擬試卷16
- 礦井灌漿設計課程設計
- 站姿坐姿課程設計
- 花藝烘焙課程設計
- 藥品驗收入門課程設計
- 互聯(lián)網(wǎng)行業(yè)安全管理實踐
- 領導班子與教學院校協(xié)調(diào)計劃
- 儲能系統(tǒng)技術服務合同
- GB/T 1094.7-2024電力變壓器第7部分:油浸式電力變壓器負載導則
- 電大西方行政學說
- 2024-2025學年人教版數(shù)學七年級上冊期末復習卷(含答案)
- 2024年度中國PE、VC基金行業(yè)CFO白皮書
- 2023年南京市江寧區(qū)招聘教師考試真題
- 《中國民族史》重點筆記(期末)
- 中南大學《物聯(lián)網(wǎng)原理及應用》2022-2023學年第一學期期末試卷
- 抓斗課件教學課件
- 第三方物流供應商準入與考核制度
- 基于Python的去哪兒網(wǎng)酒店數(shù)據(jù)采集與分析
評論
0/150
提交評論