版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),命題“存在,使方程有實(shí)根”的否定是()A.任意,使方程無(wú)實(shí)根B.任意,使方程有實(shí)根C.存在,使方程無(wú)實(shí)根D.存在,使方程有實(shí)根2.設(shè),且,則()A. B. C. D.3.設(shè),,分別是中,,所對(duì)邊的邊長(zhǎng),則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直4.已知數(shù)列中,,且當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.則此數(shù)列的前項(xiàng)的和為()A. B. C. D.5.若,則的值為()A. B. C. D.6.已知的展開(kāi)式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.7.在正方體中,,分別為,的中點(diǎn),則異面直線,所成角的余弦值為()A. B. C. D.8.已知集合,,若,則()A. B. C. D.9.用電腦每次可以從區(qū)間內(nèi)自動(dòng)生成一個(gè)實(shí)數(shù),且每次生成每個(gè)實(shí)數(shù)都是等可能性的.若用該電腦連續(xù)生成3個(gè)實(shí)數(shù),則這3個(gè)實(shí)數(shù)都小于的概率為()A. B. C. D.10.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.11.設(shè)a,b,c為正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件12.等比數(shù)列若則()A.±6 B.6 C.-6 D.二、填空題:本題共4小題,每小題5分,共20分。13.二項(xiàng)式的展開(kāi)式中項(xiàng)的系數(shù)為_(kāi)____.14.若存在實(shí)數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對(duì)“分離函數(shù)”,下列各組函數(shù)中是對(duì)應(yīng)區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號(hào))①,,;②,,;③,,;④,,.15.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_____________16.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)山東省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績(jī)將由3門統(tǒng)一高考科目成績(jī)和自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目成績(jī)組成,總分為750分.其中,統(tǒng)一高考科目為語(yǔ)文、數(shù)學(xué)、外語(yǔ),自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語(yǔ)、數(shù)、外三科各占150分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級(jí)考試科目中考生的原始成績(jī)從高到低分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí)。參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級(jí)考試科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).舉例說(shuō)明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級(jí)的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績(jī)屬C+等級(jí).而C+等級(jí)的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級(jí)分為x,69-6565-58=70-x四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績(jī)?yōu)?7.(1)某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布ξ~N(60,12(i)若小明同學(xué)在這次考試中物理原始分為84分,等級(jí)為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績(jī);(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取4人,記X表示這4人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68218.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.19.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)只有一個(gè)零點(diǎn),求正實(shí)數(shù)的值.20.(12分)中的內(nèi)角,,的對(duì)邊分別是,,,若,.(1)求;(2)若,點(diǎn)為邊上一點(diǎn),且,求的面積.21.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實(shí)數(shù)的取值范圍.22.(10分)若數(shù)列滿足:對(duì)于任意,均為數(shù)列中的項(xiàng),則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項(xiàng)和,,試判斷數(shù)列是否為“數(shù)列”?說(shuō)明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對(duì)于任意,均有,求數(shù)列的通項(xiàng)公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
只需將“存在”改成“任意”,有實(shí)根改成無(wú)實(shí)根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實(shí)根”的否定是“任意,使方程無(wú)實(shí)根”.故選:A【點(diǎn)睛】本題考查含有一個(gè)量詞的命題的否定,此類問(wèn)題要注意在兩個(gè)方面作出變化:1.量詞,2.結(jié)論,是一道基礎(chǔ)題.2.C【解析】
將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點(diǎn)睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡(jiǎn)單題目.3.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系4.A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項(xiàng)和公式求出前項(xiàng)的奇數(shù)項(xiàng)的和,利用等比數(shù)列的前項(xiàng)和公式求出前項(xiàng)的偶數(shù)項(xiàng)的和,進(jìn)而可求解.【詳解】當(dāng)為奇數(shù)時(shí),,則數(shù)列奇數(shù)項(xiàng)是以為首項(xiàng),以為公差的等差數(shù)列,當(dāng)為偶數(shù)時(shí),,則數(shù)列中每個(gè)偶數(shù)項(xiàng)加是以為首項(xiàng),以為公比的等比數(shù)列.所以.故選:A【點(diǎn)睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項(xiàng)和公式、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.5.C【解析】
根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開(kāi)式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開(kāi)式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力6.D【解析】因?yàn)榈恼归_(kāi)式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.7.D【解析】
連接,,因?yàn)?,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長(zhǎng)為2,取的中點(diǎn)為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因?yàn)?,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長(zhǎng)為2,則,,在等腰中,取的中點(diǎn)為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點(diǎn)睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計(jì)算能力.8.A【解析】
由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點(diǎn)睛】本題考查了集合交集的含義,也考查了元素與集合的關(guān)系,屬于基礎(chǔ)題.9.C【解析】
由幾何概型的概率計(jì)算,知每次生成一個(gè)實(shí)數(shù)小于1的概率為,結(jié)合獨(dú)立事件發(fā)生的概率計(jì)算即可.【詳解】∵每次生成一個(gè)實(shí)數(shù)小于1的概率為.∴這3個(gè)實(shí)數(shù)都小于1的概率為.故選:C.【點(diǎn)睛】本題考查獨(dú)立事件同時(shí)發(fā)生的概率,考查學(xué)生基本的計(jì)算能力,是一道容易題.10.B【解析】
根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.11.B【解析】
根據(jù)不等式的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:,,為正數(shù),當(dāng),,時(shí),滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合不等式的性質(zhì)是解決本題的關(guān)鍵.12.B【解析】
根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.15【解析】
由題得,,令,解得,代入可得展開(kāi)式中含x6項(xiàng)的系數(shù).【詳解】由題得,,令,解得,所以二項(xiàng)式的展開(kāi)式中項(xiàng)的系數(shù)為.故答案為:15【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,考查了利用通項(xiàng)公式去求展開(kāi)式中某項(xiàng)的系數(shù)問(wèn)題.14.①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點(diǎn),若兩函數(shù)在公切點(diǎn)對(duì)應(yīng)的位置一個(gè)單增,另一個(gè)單減,則很容易判斷,對(duì)①,③,④都可以采用此法判斷,對(duì)②分析式子特點(diǎn)可知,,進(jìn)而判斷【詳解】①時(shí),令,則,單調(diào)遞增,,即.令,則,單調(diào)遞減,,即,因此,滿足題意.②時(shí),易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時(shí),注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿足題意.故答案為:①②④【點(diǎn)睛】本題考查新定義題型、利用導(dǎo)數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題15.【解析】
聯(lián)立直線與拋物線方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:聯(lián)立解得或,即,,,,,故答案為:【點(diǎn)睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.16.【解析】
首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點(diǎn)睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問(wèn)題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(i)83.;(ii)272.(2)見(jiàn)解析.【解析】
(1)根據(jù)原始分?jǐn)?shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結(jié)合所給示例,即可求得小明轉(zhuǎn)換后的物理成績(jī);根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級(jí)人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項(xiàng)分布即可求得X【詳解】(1)(i)設(shè)小明轉(zhuǎn)換后的物理等級(jí)分為x,93-8484-82求得x≈82.64.小明轉(zhuǎn)換后的物理成績(jī)?yōu)?3分;(ii)因?yàn)槲锢砜荚囋挤只痉恼龖B(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數(shù)為2000×0.136=272(人);(2)由題意得,隨機(jī)抽取1人,其等級(jí)成績(jī)?cè)趨^(qū)間61,80內(nèi)的概率為25隨機(jī)抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數(shù)學(xué)期望EX【點(diǎn)睛】本題考查了統(tǒng)計(jì)的綜合應(yīng)用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數(shù)學(xué)期望的求法,文字多,數(shù)據(jù)多,需要細(xì)心的分析和理解,屬于中檔題。18.(1)見(jiàn)解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進(jìn)而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長(zhǎng)度,建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設(shè),連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點(diǎn),又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長(zhǎng)度,建立如圖的空間直角坐標(biāo)系,為等邊三角形,,,,設(shè)平面的法向量為,則,即,∴可取,設(shè)平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【點(diǎn)睛】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時(shí)先證明三條兩兩垂直的直線,屬于中檔題.19.(1)證明見(jiàn)解析;(2).【解析】
(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過(guò)導(dǎo)數(shù)求證即可(2)直接求導(dǎo)可得,,令,得或,故根據(jù)0與的大小關(guān)系來(lái)進(jìn)行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當(dāng)時(shí),.所以,即,所以.所以當(dāng)時(shí),.解:(2)因?yàn)?,所?討論:①當(dāng)時(shí),,此時(shí)函數(shù)在區(qū)間上單調(diào)遞減.又,故此時(shí)函數(shù)僅有一個(gè)零點(diǎn)為0;②當(dāng)時(shí),令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當(dāng)時(shí),有.又,此時(shí),故當(dāng)時(shí),函數(shù)還有一個(gè)零點(diǎn),不符合題意;③當(dāng)時(shí),令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當(dāng)且時(shí),,故此時(shí)函數(shù)還有一個(gè)零點(diǎn),不符合題意.綜上,所求實(shí)數(shù)的值為.【點(diǎn)睛】本題考查不等式的恒成立問(wèn)題和函數(shù)的零點(diǎn)問(wèn)題,本題的難點(diǎn)在于把導(dǎo)數(shù)化成因式分解的形式,如,進(jìn)而分類討論,本題屬于難題20.(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計(jì)算即可;(2)由已知可得,利用余弦定理解出,由已知計(jì)算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡(jiǎn)得,,解得或(負(fù)值舍去),,,,,,的面積.【點(diǎn)睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應(yīng)用,考查了二倍角公式的應(yīng)用,考查了運(yùn)算能力,屬于基礎(chǔ)題.21.(1)證明見(jiàn)詳解;(2)【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點(diǎn)存在定理可知有唯一零點(diǎn),且.由此判斷出時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.【詳解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度安全風(fēng)險(xiǎn)評(píng)估責(zé)任書(shū)協(xié)議預(yù)防事故發(fā)生3篇
- 2024紙箱購(gòu)銷合同書(shū)
- 2025年度電力工程車輛司機(jī)聘用協(xié)議書(shū)及安全要求3篇
- 2025年度餐飲服務(wù)業(yè)個(gè)人臨時(shí)雇傭合同范本4篇
- 2025年校企合作產(chǎn)學(xué)研合作創(chuàng)新基地建設(shè)合同3篇
- 2025年度個(gè)人合伙餐飲連鎖經(jīng)營(yíng)合作協(xié)議書(shū)4篇
- 2025個(gè)人工傷賠償協(xié)議書(shū)范本5篇
- 2025年江西贛州稀土集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年蓄水池建筑工程施工質(zhì)量保修服務(wù)合同3篇
- 2025年遼寧朝陽(yáng)水務(wù)集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 2024電子商務(wù)平臺(tái)用戶隱私保護(hù)協(xié)議3篇
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 英語(yǔ) 含答案
- 電力工程施工安全風(fēng)險(xiǎn)評(píng)估與防控
- 醫(yī)學(xué)教程 常見(jiàn)體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關(guān)系
- 智聯(lián)招聘在線測(cè)評(píng)題
- DB3418T 008-2019 宣紙潤(rùn)墨性感官評(píng)判方法
- 【魔鏡洞察】2024藥食同源保健品滋補(bǔ)品行業(yè)分析報(bào)告
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗(yàn)人員理論考試題及答案
- 鋼筋桁架樓承板施工方案
- 2024年駐村第一書(shū)記工作總結(jié)干貨3篇
評(píng)論
0/150
提交評(píng)論