2023-2024學(xué)年江蘇省揚州市江都區(qū)六校聯(lián)考中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年江蘇省揚州市江都區(qū)六校聯(lián)考中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年江蘇省揚州市江都區(qū)六校聯(lián)考中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年江蘇省揚州市江都區(qū)六校聯(lián)考中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年江蘇省揚州市江都區(qū)六校聯(lián)考中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省揚州市江都區(qū)六校聯(lián)考中考試題猜想數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該??奎c的位置應(yīng)設(shè)在()A.點A B.點B C.A,B之間 D.B,C之間2.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.等腰三角形的一個外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°4.如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米5.2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學(xué)記數(shù)法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10116.已知2是關(guān)于x的方程x2-2mx+3m=0的一個根,并且這個方程的兩個根恰好是等腰三角形ABC的兩條邊長,則三角形ABC的周長為()A.10 B.14 C.10或14 D.8或107.一元二次方程x2+2x﹣15=0的兩個根為()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=58.已知是一個單位向量,、是非零向量,那么下列等式正確的是()A. B. C. D.9.下列一元二次方程中,有兩個不相等實數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=010.太原市出租車的收費標(biāo)準(zhǔn)是:白天起步價8元(即行駛距離不超過3km都需付8元車費),超過3km以后,每增加1km,加收1.6元(不足1km按1km計),某人從甲地到乙地經(jīng)過的路程是xkm,出租車費為16元,那么x的最大值是()A.11 B.8 C.7 D.511.二次函數(shù)y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標(biāo)是(1,2)C.當(dāng)x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標(biāo)為(0,2)12.某學(xué)校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學(xué)校隨機抽取若干同學(xué)參加比賽,成績被制成不完整的統(tǒng)計表如下.成績?nèi)藬?shù)(頻數(shù))百分比(頻率)050.2105150.42050.1根據(jù)表中已有的信息,下列結(jié)論正確的是()A.共有40名同學(xué)參加知識競賽B.抽到的同學(xué)參加知識競賽的平均成績?yōu)?0分C.已知該校共有800名學(xué)生,若都參加競賽,得0分的估計有100人D.抽到同學(xué)參加知識競賽成績的中位數(shù)為15分二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.14.分式方程x2x-1=1-215.方程x-1=的解為:______.16.已知關(guān)于X的一元二次方程有實數(shù)根,則m的取值范圍是____________________17.如圖,AB為⊙O的直徑,BC為⊙O的弦,點D是劣弧AC上一點,若點E在直徑AB另一側(cè)的半圓上,且∠AED=27°,則∠BCD的度數(shù)為_______.18.已知同一個反比例函數(shù)圖象上的兩點、,若,且,則這個反比例函數(shù)的解析式為______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達式;設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?20.(6分)我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數(shù),四軍才分布一疋,請問官軍多少數(shù).”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?21.(6分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.22.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.23.(8分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.24.(10分)某市A,B兩個蔬菜基地得知四川C,D兩個災(zāi)民安置點分別急需蔬菜240t和260t的消息后,決定調(diào)運蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運C,D兩個災(zāi)區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設(shè)從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調(diào)運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設(shè)A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關(guān)系式,并求總運費最小的調(diào)運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調(diào)動方案.25.(10分)如圖,在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B的直線與CD的延長線交于點F,AC∥BF.(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;(2)若tan∠F=,CD=a,請用a表示⊙O的半徑;(3)求證:GF2﹣GB2=DF?GF.26.(12分)為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:“祖沖之獎”的學(xué)生成績統(tǒng)計表:分?jǐn)?shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數(shù)是_____,并將條形統(tǒng)計圖補充完整;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.27.(12分)今年3月12日植樹節(jié)期間,學(xué)校預(yù)購進A,B兩種樹苗.若購進A種樹苗3棵,B種樹苗5棵,需2100元;若購進A種樹苗4棵,B種樹苗10棵,需3800元.求購進A,B兩種樹苗的單價;若該學(xué)校準(zhǔn)備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

此題為數(shù)學(xué)知識的應(yīng)用,由題意設(shè)一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當(dāng)在AB之間??繒r,設(shè)??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當(dāng)在BC之間??繒r,設(shè)??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應(yīng)設(shè)在點A;故選A.【點睛】此題為數(shù)學(xué)知識的應(yīng)用,考查知識點為兩點之間線段最短.2、D【解析】

求得頂點坐標(biāo),得出頂點的橫坐標(biāo)和縱坐標(biāo)的關(guān)系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標(biāo)為:x=﹣=﹣a﹣,縱坐標(biāo)為:y==﹣2a﹣,∴拋物線的頂點橫坐標(biāo)和縱坐標(biāo)的關(guān)系式為:y=2x+,∴拋物線的頂點經(jīng)過一二三象限,不經(jīng)過第四象限,故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),得到頂點的橫縱坐標(biāo)的關(guān)系式是解題的關(guān)鍵.3、D【解析】

根據(jù)鄰補角的定義求出與外角相鄰的內(nèi)角,再根據(jù)等腰三角形的性質(zhì)分情況解答.【詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內(nèi)角為180°?100°=80°,當(dāng)80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【點睛】本題考查了等腰三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì).4、A【解析】

作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構(gòu)建方程即可解決問題.【詳解】作BM⊥ED交ED的延長線于M,CN⊥DM于N.在Rt△CDN中,∵,設(shè)CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.5、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】31600000000=3.16×1.故選:C.【點睛】本題考查科學(xué)記數(shù)法,解題的關(guān)鍵是掌握科學(xué)記數(shù)法的表示.6、B【解析】試題分析:∵2是關(guān)于x的方程x2﹣2mx+3m=0的一個根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當(dāng)1是腰時,2是底邊,此時周長=1+1+2=2;②當(dāng)1是底邊時,2是腰,2+2<1,不能構(gòu)成三角形.所以它的周長是2.考點:解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關(guān)系;等腰三角形的性質(zhì).7、C【解析】

運用配方法解方程即可.【詳解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故選擇C.【點睛】本題考查了解一元二次方程,選擇合適的解方程方法是解題關(guān)鍵.8、B【解析】

長度不為0的向量叫做非零向量,向量包括長度及方向,而長度等于1個單位長度的向量叫做單位向量,注意單位向量只規(guī)定大小沒規(guī)定方向,則可分析求解.【詳解】A.由于單位向量只限制長度,不確定方向,故錯誤;B.符合向量的長度及方向,正確;C.得出的是a的方向不是單位向量,故錯誤;D.左邊得出的是a的方向,右邊得出的是b的方向,兩者方向不一定相同,故錯誤.故答案選B.【點睛】本題考查的知識點是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.9、B【解析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時,方程有兩個不相等的實數(shù)根;②當(dāng)△=0時,方程有兩個相等的實數(shù)根;③當(dāng)△<0時,方程無實數(shù)根.10、B【解析】

根據(jù)等量關(guān)系,即(經(jīng)過的路程﹣3)×1.6+起步價2元≤1.列出不等式求解.【詳解】可設(shè)此人從甲地到乙地經(jīng)過的路程為xkm,根據(jù)題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經(jīng)過的路程最多為2km.故選B.【點睛】考查了一元一次方程的應(yīng)用.關(guān)鍵是掌握正確理解題意,找出題目中的數(shù)量關(guān)系.11、B【解析】

由拋物線解析式可求得其開口方向、頂點坐標(biāo)、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標(biāo)是(1,2),正確;C、當(dāng)x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標(biāo)為(0,5),錯誤;故選:B.【點睛】考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標(biāo)為(h,k).12、B【解析】

根據(jù)頻數(shù)÷頻率=總數(shù)可求出參加人數(shù),根據(jù)分別求出5分、15分、0分的人數(shù),即可求出平均分,根據(jù)0分的頻率即可求出800人中0分的人數(shù),根據(jù)中位數(shù)的定義求出中位數(shù),對選項進行判斷即可.【詳解】∵5÷0.1=50(名),有50名同學(xué)參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學(xué)分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學(xué)參加知識競賽的平均成績?yōu)椋?10,故選項B正確;∵0分同學(xué)10人,其頻率為0.2,∴800名學(xué)生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學(xué)的成績?yōu)?0分、15分,∴抽到同學(xué)參加知識競賽成績的中位數(shù)為12.5分,故選項D錯誤.故選:B.【點睛】本題考查利用頻率估算概率,平均數(shù)及中位數(shù)的定義,熟練掌握相關(guān)知識是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】∵等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.14、x=﹣1.【解析】試題分析:分式方程變形后,去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.試題解析:去分母得:x=2x﹣1+2,解得:x=﹣1,經(jīng)檢驗x=﹣1是分式方程的解.考點:解分式方程.15、【解析】

兩邊平方解答即可.【詳解】原方程可化為:(x-1)2=1-x,

解得:x1=0,x2=1,

經(jīng)檢驗,x=0不是原方程的解,x=1是原方程的解

故答案為.【點睛】此題考查無理方程的解法,關(guān)鍵是把兩邊平方解答,要注意解答后一定要檢驗.16、m≤3且m≠2【解析】試題解析:∵一元二次方程有實數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.17、117°【解析】

連接AD,BD,利用圓周角定理解答即可.【詳解】連接AD,BD,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案為117°【點睛】此題考查圓周角定理,關(guān)鍵是根據(jù)圓周角定理解答.18、y=【解析】解:設(shè)這個反比例函數(shù)的表達式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數(shù)圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數(shù)的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,所有在反比例函數(shù)上的點的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).同時考查了式子的變形.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】

(1)用待定系數(shù)法求一次函數(shù)的表達式;(2)利用利潤的定義,求與之間的函數(shù)表達式;(3)利用二次函數(shù)的性質(zhì)求極值.【詳解】解:(1)設(shè),由題意,得,解得,∴所求函數(shù)表達式為.(2).(3),其中,∵,∴當(dāng)時,隨的增大而增大,當(dāng)時,隨的增大而減小,當(dāng)售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數(shù)的實際應(yīng)用.20、官有200人,兵有800人【解析】

設(shè)官有x人,兵有y人,根據(jù)1000官兵正好分1000匹布,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論.【詳解】解:設(shè)官有x人,兵有y人,依題意,得:,解得:.答:官有200人,兵有800人.【點睛】本題主要考查二元一次方程組的應(yīng)用,根據(jù)題意列出二元一次方程組是解題的關(guān)鍵.21、(1)見解析;(2)【解析】

(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質(zhì)及角的和差關(guān)系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設(shè),則,.根據(jù)兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數(shù)的定義即可求出的值.【詳解】(1)連接,.∵是的直徑,弦于點,∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點.設(shè),則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【點睛】本題考查圓的綜合問題,涉及切線的判定與性質(zhì),菱形的判定與性質(zhì),等邊三角形的性質(zhì)及銳角三角函數(shù),考查學(xué)生綜合運用知識的能力,熟練掌握相關(guān)性質(zhì)是解題關(guān)鍵.22、(1)-6;(2).【解析】

(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標(biāo),作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線段的長.23、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結(jié)論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結(jié)果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點睛】本題考查了等腰直角三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、垂徑定理、三角函數(shù)等知識,熟練掌握相似三角形的判定與性質(zhì)、勾股定理是關(guān)鍵.24、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調(diào)運方案總運費最??;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】

(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關(guān)系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調(diào)運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關(guān)系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調(diào)運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關(guān)系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當(dāng)x=40時,總運費最小,此時調(diào)運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調(diào)運方案總運費最小;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小,其調(diào)運方案如表二.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于根據(jù)題意列出w與x之間的函數(shù)關(guān)系式,并注意分類討論思想的應(yīng)用.25、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)根據(jù)等邊對等角可得∠OAB=∠OBA,然后根據(jù)OA⊥CD得到∠OAB+∠AGC=90°,從而推出∠FBG+∠OBA=90°,從而得到OB⊥FB,再根據(jù)切線的定義證明即可.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ACF=∠F,根據(jù)垂徑定理可得CE=CD=a,連接OC,設(shè)圓的半徑為r,表示出OE,然后利用勾股定理列式計算即可求出r.(3)連接BD,根據(jù)在同圓或等圓中,同弧所對的圓周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,從而求出△BDG和△FBG相似,根據(jù)相似三角形對應(yīng)邊成比例列式表示出BG2,然后代入等式左邊整理即可得證.【詳解】解:(1)證明:∵OA=OB,∴∠OAB=∠O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論