版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河南省安陽一中八校聯(lián)考高考模擬數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B.C.或 D.2.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標(biāo)原點,則橢圓的離心率為()A. B. C. D.3.已知定點,,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓4.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.5.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.6.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.27.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,8.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關(guān)于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④9.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)10.若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.11.關(guān)于函數(shù),下列說法正確的是()A.函數(shù)的定義域為B.函數(shù)一個遞增區(qū)間為C.函數(shù)的圖像關(guān)于直線對稱D.將函數(shù)圖像向左平移個單位可得函數(shù)的圖像12.設(shè)集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知△的三個內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為__________,最大值為___________.14.已知函數(shù),則函數(shù)的極大值為___________.15.已知正方形邊長為,空間中的動點滿足,,則三棱錐體積的最大值是______.16.正方體的棱長為2,是它的內(nèi)切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當(dāng)弦的長度最大時,的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,且,求證:;(2)若時,恒有,求的最大值.18.(12分)第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運會的相關(guān)知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運會知識的知曉情況,在全市開展了網(wǎng)上問卷調(diào)查,民眾參與度極高,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運參與者,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計結(jié)果如下:組別頻數(shù)5304050452010(1)若此次問卷調(diào)查得分整體服從正態(tài)分布,用樣本來估計總體,設(shè),分別為這200人得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點值作為代表),求,的值(,的值四舍五入取整數(shù)),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調(diào)查的幸運市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機(jī)會,得分不低于的可獲得2次抽獎機(jī)會,在一次抽獎中,抽中價值為15元的紀(jì)念品A的概率為,抽中價值為30元的紀(jì)念品B的概率為.現(xiàn)有市民張先生參加了此次問卷調(diào)查并成為幸運參與者,記Y為他參加活動獲得紀(jì)念品的總價值,求Y的分布列和數(shù)學(xué)期望,并估算此次紀(jì)念品所需要的總金額.(參考數(shù)據(jù):;;.)19.(12分)在平面直角坐標(biāo)系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設(shè)直線(為參數(shù))與曲線相交于不同兩點,.(1)若,求線段的中點的坐標(biāo);(2)設(shè)點,若,求直線的斜率.20.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.21.(12分)已知函數(shù),.(1)當(dāng)為何值時,軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時,討論零點的個數(shù).22.(10分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
首先求出集合,再根據(jù)補(bǔ)集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D本題考查補(bǔ)集的概念及運算,一元二次不等式的解法,屬于基礎(chǔ)題.2.D【解析】
求得點的坐標(biāo),由,得出,利用向量的坐標(biāo)運算得出點的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標(biāo)來求解,考查計算能力,屬于中等題.3.B【解析】
根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B本題考查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.4.C【解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點坐標(biāo)代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點所在直線求解是解題的關(guān)鍵,屬于中檔題.5.A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題6.B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.7.B【解析】
分別求出兩個隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.離散型隨機(jī)變量的分布列的計算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識求出隨機(jī)變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.8.C【解析】
分四類情況進(jìn)行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.9.D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.10.B【解析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.11.B【解析】
化簡到,根據(jù)定義域排除,計算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域為,故錯誤;當(dāng)時,,函數(shù)單調(diào)遞增,故正確;當(dāng),關(guān)于的對稱的直線為不在定義域內(nèi),故錯誤.平移得到的函數(shù)定義域為,故不可能為,錯誤.故選:.本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對稱,三角函數(shù)平移,意在考查學(xué)生的綜合應(yīng)用能力.12.B【解析】
直接進(jìn)行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡可得當(dāng)且僅當(dāng)時,取等號又,所以令,則當(dāng),即時,當(dāng),即時,則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點在于根據(jù)余弦定理以及不等式求出,考驗分析能力以及邏輯思維能力,屬難題.14.【解析】
對函數(shù)求導(dǎo),通過賦值,求得,再對函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.本題考查函數(shù)極值的求解,難點是要通過賦值,求出未知量.15.【解析】
以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點,根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點,空間中的動點滿足,,所以,整理得,,當(dāng),時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.16.【解析】
由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當(dāng)弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.本題考查了空間向量線性運算與數(shù)量積的運算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2).【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對實數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當(dāng)時,,此時,函數(shù)單調(diào)遞減;當(dāng)時,,此時,函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,,下證,即證,構(gòu)造函數(shù),,所以,函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.①當(dāng)時,對任意的,,函數(shù)在上單調(diào)遞增,當(dāng)時,,不符合題意;②當(dāng)時,;③當(dāng)時,令,得,此時,函數(shù)單調(diào)遞增;令,得,此時,函數(shù)單調(diào)遞減...令,設(shè),則.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.本題考查利用導(dǎo)數(shù)證明不等式,同時也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.18.(1),,;(2)詳見解析.【解析】
(1)根據(jù)頻率分布表計算出平均數(shù),進(jìn)而計算方差,從而X~N(65,142),計算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每個取值對應(yīng)的概率,列出分布列,計算期望,進(jìn)而可得需要的總金額.【詳解】解:(1)由已知頻數(shù)表得:,,由,則,而,所以,則X服從正態(tài)分布,所以;(2)顯然,,所以所有Y的取值為15,30,45,60,,,,,所以Y的分布列為:Y15304560P所以,需要的總金額為:.本題考查了利用頻率分布表計算平均數(shù),方差,考查了正態(tài)分布,考查了離散型隨機(jī)變量的概率分布列和數(shù)學(xué)期望,主要考查數(shù)據(jù)分析能力和計算能力,屬于中檔題.19.(1);(2).【解析】
(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點參數(shù)和,再利用M點的參數(shù)為A、B兩點參數(shù)和的一半即可求M的坐標(biāo);(2)利用直線參數(shù)方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當(dāng)時,將(為參數(shù))代入得,設(shè)直線l上A、B兩點所對應(yīng)的參數(shù)為,中點M所對應(yīng)的參數(shù)為,則,所以的坐標(biāo)為;(2)將代入得,則,因為即,所以,故,由得,所以.本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學(xué)生的計算能力,是一道中檔題.20.(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】
(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點的判定定理,分類討論進(jìn)行求解【詳解】(1),①當(dāng)時,,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時,令,解得或,當(dāng)或時,,則單調(diào)遞增,當(dāng)時,,則單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為(2)(Ⅰ)當(dāng)時,所以在上無零點;(Ⅱ)當(dāng)時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當(dāng)時,,所以此時只需考慮函數(shù)在上零點的情況,因為,所以①當(dāng)時,在上單調(diào)遞增。又,所以(?。┊?dāng)時,在上無零點;(ⅱ)當(dāng)時,,又,所以此時在上恰有一個零點;②當(dāng)時,令,得,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,因為,,所以此時在上恰有一個零點,綜上,本題考查利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間,考查利用導(dǎo)數(shù)處理零點個數(shù)問題,考查運算能力,考查分類討論思想21.(1);(2)見解析.【解析】
(1)設(shè)切點坐標(biāo)為,然后根據(jù)可解得實數(shù)的值;(2)令,,然后對實數(shù)進(jìn)行分類討論,結(jié)合和的符
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版鍋爐設(shè)備維護(hù)保養(yǎng)與能源審計合同范本3篇
- 2025版內(nèi)河水路危險品運輸合同及應(yīng)急救援協(xié)議3篇
- 二零二五年度挖機(jī)操作技能競賽贊助合同
- 1 如何合理選擇抗凝藥物
- 二零二五版民房建筑項目施工合同履約監(jiān)督協(xié)議范本4篇
- 2018年稅務(wù)稽查風(fēng)險防范及企業(yè)應(yīng)對策略
- 2025年度個人房屋買賣價格調(diào)整及支付合同2篇
- 二零二五年度戶外廣告牌發(fā)布與社區(qū)宣傳合作合同范本3篇
- 2025年度農(nóng)用土地托管服務(wù)與機(jī)械租賃合同4篇
- 2025年度個人二手房買賣協(xié)議書范本:房屋交易環(huán)保評估合同2篇
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測試卷(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版
- 招標(biāo)采購基礎(chǔ)知識培訓(xùn)
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 五年級口算題卡每天100題帶答案
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實驗技術(shù)教程
- 2024年貴州省中考理科綜合試卷(含答案)
- 無人機(jī)技術(shù)與遙感
- PDCA提高臥床患者踝泵運動的執(zhí)行率
- 黑色素的合成與美白產(chǎn)品的研究進(jìn)展
評論
0/150
提交評論