版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數的取值為A.或11 B.或11 C. D.3.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數列,則的離心率為()A. B. C. D.4.若,則的虛部是()A. B. C. D.5.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.6.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.7.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20178.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.9.已知為虛數單位,若復數滿足,則()A. B. C. D.10.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.11.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.12.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.實數,滿足,如果目標函數的最小值為,則的最小值為_______.14.若函數為自然對數的底數)在和兩處取得極值,且,則實數的取值范圍是______.15.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.16.已知命題:,,那么是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,試求曲線在點處的切線;(2)試討論函數的單調區(qū)間.18.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產品所用時間,對每個工人組裝一個該產品的用時作了記錄,得到大量統(tǒng)計數據.從這些統(tǒng)計數據中隨機抽取了個數據作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數據的中位數和眾數;(2)以這個樣本數據中優(yōu)秀員工的頻率作為概率,任意調查名工人,求被調查的名工人中優(yōu)秀員工的數量分布列和數學期望.19.(12分)在本題中,我們把具體如下性質的函數叫做區(qū)間上的閉函數:①的定義域和值域都是;②在上是增函數或者減函數.(1)若在區(qū)間上是閉函數,求常數的值;(2)找出所有形如的函數(都是常數),使其在區(qū)間上是閉函數.20.(12分)已知函數f(x)=x(1)討論fx(2)當x≥-1時,fx+a21.(12分)已知函數f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實數a,b滿足1a+122.(10分)已知函數,,設.(1)當時,求函數的單調區(qū)間;(2)設方程(其中為常數)的兩根分別為,,證明:.(注:是的導函數)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.2.A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.3.C【解析】
根據等差數列的性質設出,,,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數列,設,,.由于,據勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數列的性質,屬于中檔題.4.D【解析】
通過復數的乘除運算法則化簡求解復數為:的形式,即可得到復數的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復數的代數形式的混合運算,復數的基本概念,屬于基礎題.5.D【解析】
設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.6.D【解析】
建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據軌跡方程構造不等關系求得最值.7.D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.8.B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.9.A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.10.A【解析】
根據橢圓與雙曲線離心率的表示形式,結合和的離心率之積為,即可得的關系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎題.11.B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.12.A【解析】
根據題意得到,化簡得到,得到答案.【詳解】根據題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出不等式組對應的平面區(qū)域,利用目標函數的最小值為,確定出的值,進而確定出C點坐標,結合目標函數幾何意義,從而求得結果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內,由得可知,直線的截距最大時,取得最小值,此時直線為,作出直線,交于A點,由圖象可知,目標函數在該點取得最小值,所以直線也過A點,由,得,代入,得,所以點C的坐標為.等價于點與原點連線的斜率,所以當點為點C時,取得最小值,最小值為,故答案為:.【點睛】該題考查的是有關線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應的可行域,根據最值求出參數,結合分式型目標函數的意義求得最優(yōu)解,屬于中檔題目.14.【解析】
先將函數在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數方法研究單調性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數在上單調遞增;當,時,,即函數在和上單調遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數的應用,已知函數極值點間的關系求參數的問題,通常需要將函數極值點,轉化為導函數對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于??碱}型.15.2【解析】
由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.16.真命題【解析】
由冪函數的單調性進行判斷即可.【詳解】已知命題:,,因為在上單調遞增,則,所以是真命題,故答案為:真命題【點睛】本題主要考查了判斷全稱命題的真假,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】
(1)對函數進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數進行求導,對實數進行分類討論,可以求出函數的單調區(qū)間.【詳解】(1)當時,函數定義域為,,所以切線方程為;(2)當時,函數定義域為,在上單調遞增當時,恒成立,函數定義域為,又在單調遞增,單調遞減,單調遞增當時,函數定義域為,在單調遞增,單調遞減,單調遞增當時,設的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數的定義域為,又對稱軸,且,在單調遞增,單調遞減,單調遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數的導數討論函數的單調性問題,考查了分類思想.18.(1)43,47;(2)分布列見解析,.【解析】
(1)根據莖葉圖即可得到中位數和眾數;(2)根據數據可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數為,眾數為.(2)被調查的名工人中優(yōu)秀員工的數量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據莖葉圖求眾數和中位數,求離散型隨機變量分布列,根據分布列求解期望,關鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.19.(1);(2).【解析】
(1)依據新定義,的定義域和值域都是,且在上單調,建立方程求解;(2)依據新定義,討論的單調性,列出方程求解即可?!驹斀狻浚?)當時,由復合函數單調性知,在區(qū)間上是增函數,即有,解得;同理,當時,有,解得,綜上,。(2)若在上是閉函數,則在上是單調函數,①當在上是單調增函數,則,解得,檢驗符合;②當在上是單調減函數,則,解得,在上不是單調函數,不符合題意。故滿足在區(qū)間上是閉函數只有。【點睛】本題主要考查學生的應用意識,利用所學知識分析解決新定義問題。20.(1)見解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對a分類討論,即可得出單調性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當x=-1時,0≤-1e+1恒成立.當x>-1時,a≤xe【詳解】解法一:(1)f①當a≤0時,x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調遞減,在(-1,+∞)單調遞增.②當a>0時,f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調遞增,在綜上:當a≤0時,f(x)在(-∞,-1)上單調遞減,在(-1,+∞)上單調遞增;當0<a<1e時,f(x)在(-∞,lna),自a=1e時,f(x)在當a>1e時,f(x)在(-∞,-1),(ln(2)因為xex-ax-a+1≥0當x=-1時,0≤-1當x>-1時,a≤x令g(x)=xex設h(x)=e因為h'(x)=e即hx=e又因為h0=0,所以g(x)=xex則g(x)min=g(0)=1綜上,a的取值范圍為-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'當a≤0時,g'(x)≥0,則g(x)在所以g(x)≥g(-1)=-1當0<a≤1時,令h(x)=e因為h'(x)=2ex+x又因為h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘極小值↗g==-e當a>1時,g(0)=-a+1<0,不滿足題意.綜上,a的取值范圍為-∞,1.【點睛】本題考查了利用導數研究函數的單調性極值與最值、分類討論方法、方程與不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州工會課程設計
- 2024年設備監(jiān)理師考試題庫含答案(滿分必刷)
- 餐飲食品銷售顧問
- 鞋類設計師工作經驗分享
- 秘書工作中的法律知識計劃
- 教育用品采購心得
- 化工行業(yè)安全管理經驗分享
- 廣州市工商行政管理局網站政務服務操作指南
- 餐飲行業(yè)個人發(fā)展計劃
- 開招聘司法所工作人員報名登記表
- 選礦廠建設課件
- 部編人教版7-9年級語文目錄
- 人教版小學數學五年級上冊七單元《數學廣角-植樹問題》單元集體備課整體設計
- 中國超重肥胖醫(yī)學營養(yǎng)治療指南
- 嚴重精神障礙患者家屬護理教育
- 汽車4S店市場部工作計劃
- 現代營銷學原理課件
- 德語語言學導論智慧樹知到期末考試答案2024年
- 拒絕早戀主題班會 課件(34張)2023-2024學年主題班會
- 離婚協(xié)議書完整版Word模板下載
- 招標代理機構內部監(jiān)督管理制度
評論
0/150
提交評論