版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.2.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.4.已知為定義在上的奇函數(shù),若當(dāng)時(shí),(為實(shí)數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.5.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.6.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.197.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.9.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸10.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β11.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A. B. C. D.12.已知集合,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且,,,則_______.14.如圖,直三棱柱中,,,,P是的中點(diǎn),則三棱錐的體積為________.15.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.16.在的展開式中的系數(shù)為,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.18.(12分)在直角坐標(biāo)平面中,已知的頂點(diǎn),,為平面內(nèi)的動(dòng)點(diǎn),且.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)過點(diǎn)且不垂直于軸的直線與交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過軸上的定點(diǎn).19.(12分)為貫徹十九大報(bào)告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗(yàn)田中各隨機(jī)抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長情況相互獨(dú)立.從、、三組各隨機(jī)選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗(yàn)田中分別再隨機(jī)抽取株該種植物,它們的高度依次是、、(單位:厘米).這個(gè)新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)20.(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列中,,,求數(shù)列的前項(xiàng)和.22.(10分)的內(nèi)角的對(duì)邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】根據(jù)命題的否定,可以寫出:,所以選C.2.A【解析】
計(jì)算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力和理解能力.3.D【解析】
與中間值1比較,可用換底公式化為同底數(shù)對(duì)數(shù),再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點(diǎn)睛】本題考查冪和對(duì)數(shù)的大小比較,解題時(shí)能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對(duì)數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.4.A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時(shí),.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).5.D【解析】試題分析:由,得,則,故選D.考點(diǎn):1、復(fù)數(shù)的運(yùn)算;2、復(fù)數(shù)的模.6.B【解析】
計(jì)算,故,解得答案.【詳解】當(dāng)時(shí),,即,且.故,,故.故選:.【點(diǎn)睛】本題考查了數(shù)列的相關(guān)計(jì)算,意在考查學(xué)生的計(jì)算能力和對(duì)于數(shù)列公式方法的綜合應(yīng)用.7.C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.8.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.9.B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問題;2.圓臺(tái)的體積.10.B【解析】
根據(jù)線面平行、線面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.11.B【解析】
利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求出的值.【詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時(shí)也考查了等差數(shù)列求和,考查計(jì)算能力,屬于基礎(chǔ)題.12.D【解析】
根據(jù)集合的基本運(yùn)算即可求解.【詳解】解:,,,則故選:D.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.14.【解析】
證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點(diǎn),.
故答案為:【點(diǎn)睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.15.【解析】
將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結(jié)果.【詳解】將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,則,由勾股定理可得,上述三個(gè)等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,根據(jù)三棱錐對(duì)棱長相等將三棱錐補(bǔ)成長方體是解答的關(guān)鍵,考查推理能力,屬于中等題.16.2【解析】
首先求出的展開項(xiàng)中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當(dāng)時(shí)有,解得.故答案為:.【點(diǎn)睛】本題主要考查了二項(xiàng)式展開項(xiàng)的系數(shù),屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對(duì)應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.18.(1)();(2)證明見解析.【解析】
(1)設(shè)點(diǎn),分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點(diǎn),,,表示出直線,取,得,即可證明直線過軸上的定點(diǎn).【詳解】(1)設(shè),由已知,∴,∴(),化簡得點(diǎn)的軌跡的方程為:();(2)由(1)知,過點(diǎn)的直線的斜率為0時(shí)與無交點(diǎn),不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過軸上的定點(diǎn).【點(diǎn)睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點(diǎn)問題,考查學(xué)生的計(jì)算能力,屬于中檔題.19.(1);(2);(3).【解析】
設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設(shè)事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結(jié)果;(2)設(shè)事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據(jù)題意直接判斷和的大小即可.【詳解】設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設(shè)事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設(shè)事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點(diǎn)睛】本題考查概率的求法,考查互斥事件加法公式、相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中等題.20.(1)證明見解析,;(2)【解析】
(1)利用,推出,然后利用等差數(shù)列的通項(xiàng)公式,即可求解;(2)由(1)知,利用裂項(xiàng)法,即可求解數(shù)列的前n項(xiàng)和.【詳解】(1)由題意,數(shù)列滿足且可得,即,所以數(shù)列是公差,首項(xiàng)的等差數(shù)列,故,所以.(2)由(1)知,所以數(shù)列的前n項(xiàng)和:==【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,以及“裂項(xiàng)法”求解數(shù)列的前n項(xiàng)和,其中解答中熟記等差數(shù)列的定義和通項(xiàng)公式,合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.21.(1);(2)【解析】
(1)當(dāng)時(shí),利用可得,故可利用等比數(shù)列的通項(xiàng)公式求出的通項(xiàng).(2)利用分組求和法可求數(shù)列的前項(xiàng)和.【詳解】(1)當(dāng)時(shí),,所以,當(dāng)時(shí),,①,②所以,即,又因?yàn)?,故,所以,所以是首?xiàng),公比為的等比數(shù)列,故.(2)由得:數(shù)列為等差數(shù)列,公差,,,.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)與求和,注意數(shù)列求和關(guān)鍵看通項(xiàng)的結(jié)構(gòu)形式,如果通項(xiàng)是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項(xiàng)是等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度風(fēng)力發(fā)電車間設(shè)備維修與技術(shù)培訓(xùn)合同4篇
- 二零二五年度企業(yè)合同糾紛調(diào)解及訴訟代理服務(wù)合同2篇
- 2025至2030年中國亞麻色織條數(shù)據(jù)監(jiān)測研究報(bào)告
- 二零二五年度航空航天器維修服務(wù)合同6篇
- 二零二五年度汽車座椅配件銷售合同范本4篇
- 智能矯形器系統(tǒng)研究-深度研究
- 二零二五年度企業(yè)員工在職學(xué)歷教育合作合同3篇
- 2025年度個(gè)人自用房屋買賣合同樣本2篇
- 2025至2031年中國葉片插芯門鎖行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國碳鋼彈簧數(shù)據(jù)監(jiān)測研究報(bào)告
- 世說新語原文及翻譯-副本
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 非遺文化走進(jìn)數(shù)字展廳+大數(shù)據(jù)與互聯(lián)網(wǎng)系創(chuàng)業(yè)計(jì)劃書
- 2024山西省文化旅游投資控股集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 科普知識(shí)進(jìn)社區(qū)活動(dòng)總結(jié)與反思
- 加油站廉潔培訓(xùn)課件
- 現(xiàn)金日記賬模板(帶公式)
- 消化內(nèi)科??票O(jiān)測指標(biāo)匯總分析
- 深圳市物業(yè)專項(xiàng)維修資金管理系統(tǒng)操作手冊(電子票據(jù))
- 混凝土結(jié)構(gòu)工程施工質(zhì)量驗(yàn)收規(guī)范
- 2023年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
評(píng)論
0/150
提交評(píng)論