2023-2024學年山東省濟寧市泗水縣重點中學中考五模數(shù)學試題含解析_第1頁
2023-2024學年山東省濟寧市泗水縣重點中學中考五模數(shù)學試題含解析_第2頁
2023-2024學年山東省濟寧市泗水縣重點中學中考五模數(shù)學試題含解析_第3頁
2023-2024學年山東省濟寧市泗水縣重點中學中考五模數(shù)學試題含解析_第4頁
2023-2024學年山東省濟寧市泗水縣重點中學中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山東省濟寧市泗水縣重點中學中考五模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統(tǒng)計如下表,根據(jù)表中的信息判斷,下列結論中錯誤的是()成績(分)3029282618人數(shù)(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數(shù)為29.4分C.該班學生這次考試成績的眾數(shù)為30分D.該班學生這次考試成績的中位數(shù)為28分2.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是()A.27 B.51 C.69 D.723.下列計算正確的是()A. B.0.00002=2×105C. D.4.若矩形的長和寬是方程x2-7x+12=0的兩根,則矩形的對角線長度為()A.5 B.7 C.8 D.105.小紅上學要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.6.在一次數(shù)學答題比賽中,五位同學答對題目的個數(shù)分別為7,5,3,5,10,則關于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.67.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發(fā),同時亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數(shù)關系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發(fā)25分時兩人第一次相遇 D.出發(fā)35分時兩人相距2000米8.2017年5月5日國產(chǎn)大型客機C919首飛成功,圓了中國人的“大飛機夢”,它顏值高性能好,全長近39米,最大載客人數(shù)168人,最大航程約5550公里.數(shù)字5550用科學記數(shù)法表示為()A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×1039.關于x的方程x2﹣3x+k=0的一個根是2,則常數(shù)k的值為()A.1 B.2 C.﹣1 D.﹣210.某射手在同一條件下進行射擊,結果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.9二、填空題(共7小題,每小題3分,滿分21分)11.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°12.2018年春節(jié)期間,反季游成為出境游的熱門,中國游客青睞的目的地仍主要集中在溫暖的東南亞地區(qū).據(jù)調查發(fā)現(xiàn)2018年春節(jié)期間出境游約有700萬人,游客目的地分布情況的扇形圖如圖所示,從中可知出境游東南亞地區(qū)的游客約有________萬人.13.如果關于x的方程(m為常數(shù))有兩個相等實數(shù)根,那么m=______.14.方程3x(x-1)=2(x-1)的根是15.方程的根是________.16.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.17.如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以OB為邊在y軸右側作等邊三角形OBC,將點C向左平移,使其對應點C′恰好落在直線AB上,則點C′的坐標為.三、解答題(共7小題,滿分69分)18.(10分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內(nèi)的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關聯(lián)點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關聯(lián)點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,求n的取值范圍.19.(5分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當線段AM最短時,求重疊部分的面積.20.(8分)如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經(jīng)過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內(nèi)接格點三角形”.設對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內(nèi)接格點三角形,AB=3,且點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是()A.7 B.8 C.14 D.1621.(10分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標;如圖2,若P點從A點出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數(shù)及P點坐標.22.(10分)如圖,AB是的直徑,AF是切線,CD是垂直于AB的弦,垂足為點E,過點C作DA的平行線與AF相交于點F,已知,.求AD的長;求證:FC是的切線.23.(12分)小敏參加答題游戲,答對最后兩道單選題就順利通關.第一道單選題有3個選項,,,第二道單選題有4個選項,,,,這兩道題小敏都不會,不過小敏還有一個“求助”機會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設第一道題的正確選項是,第二道題的正確選項是,解答下列問題:(1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關的概率;(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關的可能性更大.24.(14分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數(shù)為30分,故D錯誤;2、D【解析】設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1.列出三個數(shù)的和的方程,再根據(jù)選項解出x,看是否存在.解:設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1故三個數(shù)的和為x+x+7+x+1=3x+21當x=16時,3x+21=69;當x=10時,3x+21=51;當x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數(shù)的和不可能是3.故選D.“點睛“此題主要考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系列出方程,再求解.3、D【解析】

在完成此類化簡題時,應先將分子、分母中能夠分解因式的部分進行分解因式.有些需要先提取公因式,而有些則需要運用公式法進行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項錯誤;B、原式=2×10-5;故本選項錯誤;C、原式=;故本選項錯誤;D、原式=;故本選項正確;故選:D.【點睛】分式的乘除混合運算一般是統(tǒng)一為乘法運算,如果有乘方,還應根據(jù)分式乘方法則先乘方,即把分子、分母分別乘方,然后再進行乘除運算.同樣要注意的地方有:一是要確定好結果的符號;二是運算順序不能顛倒.4、A【解析】解:設矩形的長和寬分別為a、b,則a+b=7,ab=12,所以矩形的對角線長====1.故選A.5、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.6、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.7、B【解析】

C、由二者第二次相遇的時間結合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當時,出現(xiàn)拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據(jù)第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數(shù)圖象,可知:出發(fā)35分鐘時亮亮到達A地,根據(jù)出發(fā)35分鐘時兩人間的距離明明的速度出發(fā)時間,即可求出出發(fā)35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,

,

出發(fā)20分時兩人第一次相遇,C選項錯誤;

亮亮的速度為米分,

兩人的速度和為米分,

明明的速度為米分,A選項錯誤;

第二次相遇時距離B地距離為米,B選項正確;

出發(fā)35分鐘時兩人間的距離為米,D選項錯誤.

故選:B.【點睛】本題考查了一次函數(shù)的應用,觀察函數(shù)圖象,逐一分析四個選項的正誤是解題的關鍵.8、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:5550=5.55×1.故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、B【解析】

根據(jù)一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.10、D【解析】

觀察表格的數(shù)據(jù)可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點睛】此題主要考查了利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.二、填空題(共7小題,每小題3分,滿分21分)11、B【解析】

根據(jù)平行線的性質即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點睛】考查平行線的性質,解題的關鍵是熟練掌握平行線的性質,屬于中考基礎題.12、1【解析】分析:用總人數(shù)乘以樣本中出境游東南亞地區(qū)的百分比即可得.詳解:出境游東南亞地區(qū)的游客約有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(萬).故答案為1.點睛:本題主要考查扇形統(tǒng)計圖與樣本估計總體,解題的關鍵是掌握各項目的百分比之和為1,利用樣本估計總體思想的運用.13、1【解析】析:本題需先根據(jù)已知條件列出關于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數(shù))有兩個相等實數(shù)根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為114、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點:解一元二次方程---因式分解法.15、x=2【解析】分析:解此方程首先要把它化為我們熟悉的方程(一元二次方程),解新方程,檢驗是否符合題意,即可求得原方程的解.詳解:據(jù)題意得:2+2x=x2,∴x2﹣2x﹣2=0,∴(x﹣2)(x+1)=0,∴x1=2,x2=﹣1.∵≥0,∴x=2.故答案為:2.點睛:本題考查了學生綜合應用能力,解方程時要注意解題方法的選擇,在求值時要注意解的檢驗.16、1【解析】原方程為3x2?6x+1=0,二次項系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.17、(﹣2,2)【解析】試題分析:∵直線y=2x+4與y軸交于B點,∴x=0時,得y=4,∴B(0,4).∵以OB為邊在y軸右側作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點縱坐標為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標為(﹣2,2).考點:2.一次函數(shù)圖象上點的坐標特征;2.等邊三角形的性質;3.坐標與圖形變化-平移.三、解答題(共7小題,滿分69分)18、(1)正方形ABCD的“關聯(lián)點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關聯(lián)點”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據(jù)對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關聯(lián)點”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關聯(lián)點”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數(shù)綜合題、正方形的性質、直線與圓的位置關系等知識,解題的關鍵是理解題意,學會尋找特殊位置解決數(shù)學問題,屬于中考壓軸題.19、(1)證明見解析;(2)能;BE=1或;(3)【解析】

(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當x=3時,AM最短為,又∵當BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.20、C【解析】

根據(jù)在OB上的兩個交點之間的距離為3,可知兩交點的橫坐標的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個單位,向上平移1個單位得到開口向下的拋物線的條數(shù),同理可得開口向上的拋物線的條數(shù),然后相加即可得解.【詳解】解:如圖,開口向下,經(jīng)過點(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個單位,向上平移1個單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開口向上的拋物線也有7條,所以,滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是:7+7=1.故選C.【點睛】本題是二次函數(shù)綜合題.主要考查了網(wǎng)格結構的知識與二次函數(shù)的性質,二次函數(shù)圖象與幾何變換,作出圖形更形象直觀.21、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】

(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質得到BH=OA=3,CH=OB=1,求出OH,得到C點坐標;(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質得到PA=CQ;(3)根據(jù)C、P,Q三點共線,得到∠BQC=135°,根據(jù)全等三角形的性質得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質求出OP,得到P點坐標.【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點坐標為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當C、P,Q三點共線時,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點坐標為(1,0).【點睛】本題考查的是全等三角形的判定和性質、三角形的外角的性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.22、(1);(2)證明見解析.【解析】

(1)首先連接OD,由垂徑定理,可求得DE的長,又由勾股定理,可求得半徑OD的長,然后由勾股定理求得AD的長;(2)連接OF、OC,先證明四邊形AFCD是菱形,易證得△AFO≌△CFO,繼而可證得FC是⊙O的切線.【詳解】證明:連接OD,是的直徑,,,設,,,在中,,,解得:,,,,在中,;連接OF、OC,是切線,,,,,四邊形FADC是平行四邊形,,平行四邊形FADC是菱形,,,,,即,即,點C在上,是的切線.【點睛】此題考查了切線的判定與性質、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論