版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
重難點(diǎn)01七種零點(diǎn)問題(核心考點(diǎn)講與練)方法技巧方法技巧1.轉(zhuǎn)化思想在函數(shù)零點(diǎn)問題中的應(yīng)用方程解的個數(shù)問題可轉(zhuǎn)化為兩個函數(shù)圖象交點(diǎn)的個數(shù)問題;已知方程有解求參數(shù)范圍問題可轉(zhuǎn)化為函數(shù)值域問題.2.判斷函數(shù)零點(diǎn)個數(shù)的常用方法(1)通過解方程來判斷.(2)根據(jù)零點(diǎn)存在性定理,結(jié)合函數(shù)性質(zhì)來判斷.(3)將函數(shù)y=f(x)-g(x)的零點(diǎn)個數(shù)轉(zhuǎn)化為函數(shù)y=f(x)與y=g(x)圖象公共點(diǎn)的個數(shù)來判斷.3.正弦型函數(shù)的零點(diǎn)個數(shù)問題,可先求出零點(diǎn)的一般形式,再根據(jù)零點(diǎn)的分布得到關(guān)于整數(shù)SKIPIF1<0的不等式組,從而可求相應(yīng)的參數(shù)的取值范圍.4.涉及含參的函數(shù)零點(diǎn)問題,利用導(dǎo)數(shù)分類討論,研究函數(shù)的單調(diào)性、最值等,結(jié)合零點(diǎn)存在性定理,借助數(shù)形結(jié)合思想分析解決問題.5.函數(shù)零點(diǎn)的求解與判斷方法:(1)直接求零點(diǎn):令f(x)=0,如果能求出解,則有幾個解就有幾個零點(diǎn).(2)零點(diǎn)存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(diǎn).(3)利用圖象交點(diǎn)的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點(diǎn)的橫坐標(biāo)有幾個不同的值,就有幾個不同的零點(diǎn).6.對于復(fù)合函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)問題,求解思路如下:(1)確定內(nèi)層函數(shù)SKIPIF1<0和外層函數(shù)SKIPIF1<0;(2)確定外層函數(shù)SKIPIF1<0的零點(diǎn)SKIPIF1<0;(3)確定直線SKIPIF1<0與內(nèi)層函數(shù)SKIPIF1<0圖象的交點(diǎn)個數(shù)分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為SKIPIF1<0.題型一:零點(diǎn)存在定理法判斷函數(shù)零點(diǎn)所在區(qū)間一、單選題1.(2022·河南河南·三模(理))若實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·黑龍江·雙鴨山一中高三期末(理))函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間為(
)SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·北京密云·高三期末)心理學(xué)家有時使用函數(shù)SKIPIF1<0來測定在時間SKIPIF1<0內(nèi)能夠記憶的量SKIPIF1<0,其中A表示需要記憶的量,SKIPIF1<0表示記憶率.假設(shè)一個學(xué)生有200個單詞要記憶,心理學(xué)家測定在5min內(nèi)該學(xué)生記憶20個單詞.則記憶率SKIPIF1<0所在區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南焦作·一模(理))設(shè)函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021·江蘇·泰州中學(xué)高三階段練習(xí))已知SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,SKIPIF1<0的極小值點(diǎn)為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·安徽·安慶一中高三期末(理))函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題7.(2022·湖北·荊州中學(xué)高三開學(xué)考試)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最小值為SKIPIF1<0,且在區(qū)間SKIPIF1<0唯一的極大值點(diǎn)SKIPIF1<0.則下列說法正確的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2022·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0的定義域為R,如果存在常數(shù)SKIPIF1<0,對于任意SKIPIF1<0,都有SKIPIF1<0,則稱函數(shù)SKIPIF1<0是“類周期函數(shù)”,T為函數(shù)SKIPIF1<0的“類周期”.現(xiàn)有下面四個命題,正確的是(
)A.函數(shù)SKIPIF1<0是“類周期函數(shù)”B.函數(shù)SKIPIF1<0是“類周期函數(shù)”C.如果函數(shù)SKIPIF1<0是“類周期函數(shù)”,那么“SKIPIF1<0,SKIPIF1<0”D.如果“類周期函數(shù)”SKIPIF1<0的“類周期”為SKIPIF1<0,那么它是周期為2的周期函數(shù)9.(2021·江西·模擬預(yù)測)已知實(shí)數(shù)SKIPIF1<0,設(shè)方程SKIPIF1<0的兩個實(shí)數(shù)根分別為SKIPIF1<0,則下列結(jié)論正確的是(
)A.不等式SKIPIF1<0的解集為SKIPIF1<0B.不等式SKIPIF1<0的解集可能為空集C.SKIPIF1<0D.SKIPIF1<0三、填空題10.(2022·全國·高三專題練習(xí))下列命題中,正確的是___________.(寫出所有正確命題的編號)①在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的充要條件;②函數(shù)SKIPIF1<0的最大值是SKIPIF1<0;③若命題“SKIPIF1<0,使得SKIPIF1<0”是假命題,則SKIPIF1<0;④若函數(shù)SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)必有零點(diǎn).11.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),下列命題:①存在實(shí)數(shù)SKIPIF1<0,使得導(dǎo)函數(shù)SKIPIF1<0為增函數(shù);②當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0不單調(diào);③當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;④當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有極值.在以上命題中,正確的命題序號是______.12.(2021·福建·三明一中高三學(xué)業(yè)考試)已知函數(shù)SKIPIF1<0的零點(diǎn)SKIPIF1<0,則SKIPIF1<0__________.13.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0均為正實(shí)數(shù),且滿足SKIPIF1<0,SKIPIF1<0,則下面四個判斷:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中一定成立的有__(填序號即可).14.(2020·湖南邵陽·三模(理))在數(shù)學(xué)中,布勞威爾不動點(diǎn)定理是拓樸學(xué)里一個非常重要的不動點(diǎn)定理,它可應(yīng)用到有限維空間并構(gòu)成了一般不動點(diǎn)定理的基石,簡單來講就是對于滿足一定條件的連續(xù)函數(shù)SKIPIF1<0,存在一個點(diǎn)SKIPIF1<0,使SKIPIF1<0,那么我們稱該函數(shù)SKIPIF1<0為“不動點(diǎn)”函數(shù),給出下列函數(shù):①SKIPIF1<0;②SKIPIF1<0③SKIPIF1<0;④SKIPIF1<0(SKIPIF1<0);⑤SKIPIF1<0;其中為“不動點(diǎn)”函數(shù)的是_________.(寫出所有滿足條件的函數(shù)的序號)15.(2020·全國·高三專題練習(xí)(理))函數(shù)f(x)=1+x-SKIPIF1<0+SKIPIF1<0,g(x)=1-x+SKIPIF1<0-SKIPIF1<0,若函數(shù)F(x)=f(x+3)g(x-4),且函數(shù)F(x)的零點(diǎn)均在[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為________.四、解答題16.(2022·陜西西安·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0(e為自然對數(shù)的底數(shù),SKIPIF1<0).(1)若SKIPIF1<0,求證:SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有唯一零點(diǎn);(2)若SKIPIF1<0在其定義域上單調(diào)遞減,求a的取值范圍.17.(2022·貴州遵義·高三開學(xué)考試(理))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0零點(diǎn)的個數(shù);(2)若SKIPIF1<0的最小值為e,求a的取值范圍.題型二:方程法判斷零點(diǎn)個數(shù)一、單選題1.(2022·福建福州·三模)已知函數(shù)SKIPIF1<0,以下結(jié)論中錯誤的是(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0有無數(shù)個零點(diǎn)C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的最大值為SKIPIF1<02.(2022·北京·模擬預(yù)測)已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的零點(diǎn)個數(shù)為(
)A.SKIPIF1<0個 B.SKIPIF1<0個 C.SKIPIF1<0個 D.SKIPIF1<0個3.(2022·安徽·蕪湖一中一模(理))聲音是由物體振動產(chǎn)生的聲波,我們聽到的聲音中包含著正弦函數(shù).若某聲音對應(yīng)的函數(shù)可近似為SKIPIF1<0,則下列敘述正確的是(
)A.SKIPIF1<0為SKIPIF1<0的對稱軸 B.SKIPIF1<0為SKIPIF1<0的對稱中心C.SKIPIF1<0在區(qū)間SKIPIF1<0上有3個零點(diǎn) D.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增4.(2022·全國·高三專題練習(xí))已知函數(shù)f(x)=x+2,x<1,x+2x,x≥1.,則函數(shù)A.0 B.1 C.2 D.3二、多選題5.(2022·海南??凇つM預(yù)測)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0的定義域為R B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減 D.SKIPIF1<0有兩個零點(diǎn)6.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,下列說法正確的是(
).A.SKIPIF1<0是周期函數(shù)B.若SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0)C.SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)D.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個零點(diǎn)7.(2022·全國·高三專題練習(xí))若SKIPIF1<0和SKIPIF1<0都是定義在SKIPIF1<0上的函數(shù),且方程SKIPIF1<0有實(shí)數(shù)解,則下列式子中可以為SKIPIF1<0的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2022·全國·高三專題練習(xí)(理))關(guān)于函數(shù)SKIPIF1<0有下述四個結(jié)論,則(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0在SKIPIF1<0上有4個零點(diǎn) D.SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增三、填空題9.(2022·福建·模擬預(yù)測)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,若SKIPIF1<0在區(qū)間(SKIPIF1<0,SKIPIF1<0)上恰有2個零點(diǎn),則SKIPIF1<0的取值范圍是____________.10.(2022·河南·襄城縣教育體育局教學(xué)研究室二模(文))已知函數(shù)SKIPIF1<0有3個零點(diǎn),則實(shí)數(shù)m的取值范圍為______.四、解答題11.(2022·全國·模擬預(yù)測(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時,證明SKIPIF1<0在SKIPIF1<0上有且僅有兩個零點(diǎn).12.(2022·四川省高縣中學(xué)校模擬預(yù)測(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,判定SKIPIF1<0的零點(diǎn)的個數(shù);(2)是否存在實(shí)數(shù)SKIPIF1<0,使得當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立?若存在,求出SKIPIF1<0的取值范圍;若不存在,請說明理由.題型三:數(shù)形結(jié)合法判段函數(shù)零點(diǎn)個數(shù)一、單選題1.(2022·安徽淮南·二模(文))已知函數(shù),則下列關(guān)于函數(shù)的描述中,其中正確的是(
).①當(dāng)時,函數(shù)沒有零點(diǎn);②當(dāng)時,函數(shù)有兩不同零點(diǎn),它們互為倒數(shù);③當(dāng)時,函數(shù)有兩個不同零點(diǎn);④當(dāng)時,函數(shù)有四個不同零點(diǎn),且這四個零點(diǎn)之積為1.A.①② B.②③ C.②④ D.③④2.(2022·河南安陽·模擬預(yù)測(文))已知函數(shù),則關(guān)于的方程有個不同實(shí)數(shù)解,則實(shí)數(shù)滿足(
)A.且 B.且C.且 D.且3.(2022·安徽·模擬預(yù)測(文))已知函數(shù),若有4個零點(diǎn),則實(shí)數(shù)a的取值范圍是(
)A. B. C. D.4.(2022·河南河南·三模(理))函數(shù)的所有零點(diǎn)之和為(
)A.0 B.2 C.4 D.6二、多選題5.(2022·廣東·普寧市華僑中學(xué)二模)對于函數(shù),下列結(jié)論中正確的是(
)A.任取,都有B.,其中;C.對一切恒成立;D.函數(shù)有個零點(diǎn);6.(2022·江蘇·南京市寧海中學(xué)模擬預(yù)測)已知是定義在R上的偶函數(shù),且對任意,有,當(dāng)時,,則(
)A.是以2為周期的周期函數(shù)B.點(diǎn)是函數(shù)的一個對稱中心C.D.函數(shù)有3個零點(diǎn)三、填空題7.(2022·四川·成都七中三模(文))已知函數(shù),則函數(shù)的零點(diǎn)個數(shù)是______個.8.(2022·內(nèi)蒙古呼和浩特·一模(理))下面四個命題:①已知函數(shù)的定義域為,若為偶函數(shù),為奇函數(shù),則;②存在負(fù)數(shù),使得恰有3個零點(diǎn);③已知多項式,則;④設(shè)一組樣本數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為其中真命題的序號為___________.9.(2022·四川成都·二模(文))定義在R上的奇函數(shù)f(x)滿足,且當(dāng)時,.則函數(shù)的所有零點(diǎn)之和為______.10.(2022·全國·高三專題練習(xí))已知,給出下列四個結(jié)論:(1)若,則有兩個零點(diǎn);(2),使得有一個零點(diǎn);(3),使得有三個零點(diǎn);(4),使得有三個零點(diǎn).以上正確結(jié)論的序號是__.四、解答題11.(2022·北京·高三學(xué)業(yè)考試)給定集合,為定義在D上的函數(shù),當(dāng)時,,且對任意,都有___________.從條件①、條件②、條件③這三個條件中選擇一個作為已知,補(bǔ)充在橫線處,使存在且唯一確定.條件①:;條件②:;條件③:.解答下列問題:(1)寫出和的值;(2)寫出在上的單調(diào)區(qū)間;(3)設(shè),寫出的零點(diǎn)個數(shù).12.(2021·河北·高三階段練習(xí))已知函數(shù)的最小正周期為.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)若先將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將其圖像向左平移個單位長度,得到函數(shù)的圖像,求方程在上根的個數(shù).13.(2021·遼寧·高三階段練習(xí))已知函數(shù)的最小正周期為.(I)求函數(shù)的解析式;(II)若先將函數(shù)的圖象向左平移個單位長度,再將其圖象上所有點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,求在上的零點(diǎn)個數(shù).題型四:轉(zhuǎn)化法判斷函數(shù)零點(diǎn)個數(shù)一、單選題1.(2022·安徽·巢湖市第一中學(xué)高三期中(文))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為(
)A.3 B.4 C.5 D.62.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為(
)A.3 B.4 C.2 D.13.(2021·天津市實(shí)驗中學(xué)濱海學(xué)校高三期中)已知函數(shù)SKIPIF1<0則函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)不可能是(
)A.1 B.2 C.3 D.44.(2021·遼寧沈陽·高三階段練習(xí))對于任意正實(shí)數(shù)SKIPIF1<0,關(guān)于SKIPIF1<0的方程SKIPIF1<0的解集不可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2022·江蘇無錫·高三期末)高斯被人認(rèn)為是歷史上最重要的數(shù)學(xué)家之一,并享有“數(shù)學(xué)王子”之稱.有這樣一個函數(shù)就是以他名字命名的:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù),又稱為取整函數(shù).如:SKIPIF1<0,SKIPIF1<0.則下列結(jié)論正確的是(
)A.函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)遞增函數(shù)B.函數(shù)SKIPIF1<0有SKIPIF1<0個零點(diǎn)C.SKIPIF1<0是SKIPIF1<0上的奇函數(shù)D.對于任意實(shí)數(shù)SKIPIF1<0,都有SKIPIF1<06.(2022·全國·高三專題練習(xí))定義域和值域均為SKIPIF1<0(常數(shù)SKIPIF1<0)的函數(shù)SKIPIF1<0和SKIPIF1<0圖象如圖所示,給出下列四個命題,那么,其中正確命題是(
)A.方程SKIPIF1<0有且僅有三個解B.方程SKIPIF1<0有且僅有三個解C.方程SKIPIF1<0有且僅有九個解D.方程SKIPIF1<0有且僅有一個解三、填空題7.(2022·全國·高三專題練習(xí))已知SKIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0=SKIPIF1<0,則方程SKIPIF1<0解的個數(shù)為___________.8.(2021·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0若直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象交于A,B兩點(diǎn),且滿足SKIPIF1<0,其中O為坐標(biāo)原點(diǎn),則k值的個數(shù)為___________.四、解答題9.(2021·全國·高三專題練習(xí))證明:函數(shù)SKIPIF1<0的圖象與SKIPIF1<0的圖象有且僅有一個公共點(diǎn).10.(2020·安徽·淮南市第五中學(xué)高三階段練習(xí)(理))已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0(1)求SKIPIF1<0,SKIPIF1<0的值;(2)求SKIPIF1<0的解析式并畫出函數(shù)的簡圖;(3)討論方程SKIPIF1<0的根的情況.題型五:零點(diǎn)存在定理與函數(shù)性質(zhì)結(jié)合判斷零點(diǎn)個數(shù)一、單選題1.(2022·廣東韶關(guān)·二模)已知直線SKIPIF1<0既是函數(shù)SKIPIF1<0的圖象的切線,同時也是函數(shù)SKIPIF1<0的圖象的切線,則函數(shù)SKIPIF1<0零點(diǎn)個數(shù)為(
)A.0 B.1 C.0或1 D.1或22.(2022·天津·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0有5個不同的零點(diǎn),則正實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高三專題練習(xí)(理))已知函數(shù)SKIPIF1<0有兩個零點(diǎn),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題4.(2021·江蘇·泰州中學(xué)高三階段練習(xí))已知函數(shù)f(x)=sin(|cosx|)+cos(|sinx|),則以下結(jié)論正確的是(
)A.f(x)的圖象關(guān)于直線SKIPIF1<0對稱 B.f(x)是最小正周期為2π的偶函數(shù)C.f(x)在區(qū)間SKIPIF1<0上單調(diào)遞減 D.方程SKIPIF1<0恰有三個不相等的實(shí)數(shù)根5.(2021·湖北恩施·高三開學(xué)考試)已知函數(shù)SKIPIF1<0,則以下說法正確的是(
)A.SKIPIF1<0是偶函數(shù)B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.當(dāng)SKIPIF1<0時,SKIPIF1<0D.方程SKIPIF1<0有且只有兩個實(shí)根6.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0,則下列說法正確的有(
)A.函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)遞增函數(shù)B.對于任意實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立C.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0D.方程SKIPIF1<0有3個不相等實(shí)數(shù)解三、解答題7.(2022·江西南昌·二模(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,證明:方程SKIPIF1<0有且僅有一個正根.8.(2022·河北·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)請研究函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個數(shù)并證明;(2)當(dāng)SKIPIF1<0時,證明:SKIPIF1<0.9.(2022·全國·高三專題練習(xí))設(shè)SKIPIF1<0為實(shí)數(shù),函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)討論SKIPIF1<0的單調(diào)性;(3)當(dāng)SKIPIF1<0時,討論SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個數(shù).10.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個數(shù);(2)當(dāng)SKIPIF1<0時都有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.題型六:利用函數(shù)零點(diǎn)(方程有根)求參數(shù)值或參數(shù)范圍一、單選題1.(2022·四川成都·三模(理))若函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,則SKIPIF1<0(
).A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.22.(2022·湖南岳陽·三模)已知函數(shù)SKIPIF1<0,若不等式SKIPIF1<0有且僅有2個整數(shù)解,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·山西·模擬預(yù)測(文))已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有三個零點(diǎn),則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題4.(2021·遼寧·東北育才學(xué)校二模)一般地,若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,則稱為的“SKIPIF1<0倍跟隨區(qū)間”;若函數(shù)的定義域為SKIPIF1<0,值域也為SKIPIF1<0,則稱SKIPIF1<0為SKIPIF1<0的“跟隨區(qū)間”.下列結(jié)論正確的是(
)A.若SKIPIF1<0為SKIPIF1<0的跟隨區(qū)間,則SKIPIF1<0B.函數(shù)SKIPIF1<0存在跟隨區(qū)間C.若函數(shù)SKIPIF1<0存在跟隨區(qū)間,則SKIPIF1<0D.二次函數(shù)SKIPIF1<0存在“3倍跟隨區(qū)間”三、填空題5.(2022·福建南平·三模)已知函數(shù)SKIPIF1<0有零點(diǎn),則實(shí)數(shù)SKIPIF1<0___________.6.(2022·四川·石室中學(xué)三模(文))若函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,且直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有三個不同的公共點(diǎn),則實(shí)數(shù)k的值為______.四、解答題7.(2021·遼寧·東北育才學(xué)校二模)已知二次函數(shù)SKIPIF1<0滿足以下條件:①經(jīng)過原點(diǎn)SKIPIF1<0;②SKIPIF1<0,SKIPIF1<0;③函數(shù)SKIPIF1<0只有一個零點(diǎn)(1)求二次函數(shù)SKIPIF1<0的解析式;(2)若函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個公共點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.題型七:利用函數(shù)的交點(diǎn)(交點(diǎn)個數(shù))求參數(shù)一、單選題1.(2022·河南安陽·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),若函數(shù)SKIPIF1<0的零點(diǎn)有5個,則實(shí)數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<02.(2022·山東濟(jì)寧·二模)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有5個零點(diǎn),則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,對SKIPIF1<0,都有SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,若函數(shù)SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人消費(fèi)貸款保證擔(dān)保協(xié)議范本4篇
- 2025年度個人二手房出售與貸款擔(dān)保合同2篇
- 小學(xué)生數(shù)學(xué)問題解決能力的多維度培養(yǎng)
- 2025年度個人公司股權(quán)代持爭議解決合同2篇
- 2025版施工現(xiàn)場消防安全保衛(wèi)與應(yīng)急管理合同3篇
- 小學(xué)生網(wǎng)絡(luò)安全意識的提升途徑
- 海南2025年海南醫(yī)科大學(xué)第一附屬醫(yī)院招聘206人筆試歷年參考題庫附帶答案詳解
- 2025年度智能農(nóng)業(yè)管理系統(tǒng)個人股東股權(quán)轉(zhuǎn)讓協(xié)議書3篇
- 課外活動對學(xué)生創(chuàng)新能力的促進(jìn)作用研究
- 2025年粵教滬科版必修2歷史下冊月考試卷含答案
- 2024年全國統(tǒng)一考試高考新課標(biāo)Ⅱ卷數(shù)學(xué)試題(真題+答案)
- 2024山西省文化旅游投資控股集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 科普知識進(jìn)社區(qū)活動總結(jié)與反思
- 加油站廉潔培訓(xùn)課件
- 現(xiàn)金日記賬模板(帶公式)
- 消化內(nèi)科??票O(jiān)測指標(biāo)匯總分析
- 2023屆上海市松江區(qū)高三下學(xué)期二模英語試題(含答案)
- 深圳市物業(yè)專項維修資金管理系統(tǒng)操作手冊(電子票據(jù))
- 混凝土結(jié)構(gòu)工程施工質(zhì)量驗收規(guī)范
- 2023年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
- 起重機(jī)械安裝吊裝危險源辨識、風(fēng)險評價表
評論
0/150
提交評論