江西省南昌八中、南昌二十三中等四校2021-2022學年高考數(shù)學五模試卷含解析_第1頁
江西省南昌八中、南昌二十三中等四校2021-2022學年高考數(shù)學五模試卷含解析_第2頁
江西省南昌八中、南昌二十三中等四校2021-2022學年高考數(shù)學五模試卷含解析_第3頁
江西省南昌八中、南昌二十三中等四校2021-2022學年高考數(shù)學五模試卷含解析_第4頁
江西省南昌八中、南昌二十三中等四校2021-2022學年高考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.2.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.3.下列不等式成立的是()A. B. C. D.4.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.55.關(guān)于函數(shù)有下述四個結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④6.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.97.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.8.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.9.已知滿足,,,則在上的投影為()A. B. C. D.210.若復數(shù)z滿足,則復數(shù)z在復平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.12.若,滿足約束條件,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為14.如圖,在平行四邊形中,,,則的值為_____.15.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.16.在平面直角坐標系中,曲線在點處的切線與x軸相交于點A,其中e為自然對數(shù)的底數(shù).若點,的面積為3,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).19.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實數(shù)的取值范圍.20.(12分)據(jù)《人民網(wǎng)》報道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導了地球變綠.據(jù)統(tǒng)計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區(qū)中,從退化林修復面積超過一萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學期望.21.(12分)設(shè)實數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)設(shè)函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設(shè)點,由,得關(guān)于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設(shè)點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.2.A【解析】

先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.3.D【解析】

根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個選項的正誤.【詳解】對于,,,錯誤;對于,在上單調(diào)遞減,,錯誤;對于,,,,錯誤;對于,在上單調(diào)遞增,,正確.故選:.【點睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.4.D【解析】

由對數(shù)運算法則和等比數(shù)列的性質(zhì)計算.【詳解】由題意.故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.5.C【解析】

根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.6.B【解析】

根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數(shù)量積運算,掌握基本概念和公式即可解決,屬于簡單題目.7.B【解析】

根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.8.B【解析】

由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應(yīng)填?故選:.【點睛】本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.9.A【解析】

根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎(chǔ)題.10.A【解析】

化簡復數(shù),求得,得到復數(shù)在復平面對應(yīng)點的坐標,即可求解.【詳解】由題意,復數(shù)z滿足,可得,所以復數(shù)在復平面內(nèi)對應(yīng)點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何表示方法,其中解答中熟記復數(shù)的運算法則,結(jié)合復數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.11.A【解析】

依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據(jù)求出的坐標,求出邊所在直線的方程,設(shè),利用坐標表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設(shè),解得,所在直線的方程為因為點在邊所在直線上,故設(shè)當時故選:【點睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標系,屬于中檔題.12.B【解析】

根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應(yīng)坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)向量共線定理得A,B,C三點共線,再根據(jù)點斜式得結(jié)果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.14.【解析】

根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.【點睛】本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運算,考查了計算能力,屬于基礎(chǔ)題.15.90°【解析】

易得平面PAD,P點在與BA垂直的圓面內(nèi)運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內(nèi)運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點睛】本題四棱錐外接球有關(guān)的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.16.【解析】

對求導,再根據(jù)點的坐標可得切線方程,令,可得點橫坐標,由的面積為3,求解即得.【詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的切線,難度不大.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結(jié)合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因為,由正弦定理可得,,又,所以,所以根據(jù)余弦定理得,,解得,;(Ⅱ)因為,所以,,,則.【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎(chǔ)題.18.(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調(diào)遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數(shù)學期望,考查了分析問題、解決問題的能力,屬于中檔題.19.(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】

(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結(jié)合即可解決.【詳解】(1),當時,,遞增,當時,,遞減.故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),,,設(shè)的根為,即有可得,,當時,,遞減,當時,,遞增.,所以,①當;②當時,設(shè),遞增,,所以.綜上,.【點睛】本題考查了利用導數(shù)研究函數(shù)單調(diào)性以及函數(shù)恒成立問題,這里要強調(diào)一點,處理恒成立問題時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理.20.(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海?。唬?);(3)分布列見詳解,數(shù)學期望為【解析】

(1)通過數(shù)據(jù)的觀察以及計算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過數(shù)據(jù)的觀察以及計算新封山育林面積與造林總面積比值,得出比值超過的地區(qū)個數(shù),然后可得結(jié)果.(3)計算退化林修復面積超過一萬公頃的地區(qū)中選兩個地區(qū)總數(shù),退化林修復面積超過六萬公頃的地區(qū)的個數(shù)為,列出所有取值并計算相應(yīng)概率,然后可得結(jié)果.【詳解】(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省.(2)記事件A:在這十個地區(qū)中,任選一個地區(qū),該地區(qū)新封山育林面積占總面積的比值超過根據(jù)數(shù)據(jù)可知:青海地區(qū)人工造林面積占總面積比超過,則(3)退化林修復面積超過一萬公頃有6個地區(qū):內(nèi)蒙、河北、河南、重慶、陜西、新疆,其中退化林修復面積超過六萬公頃有3個地區(qū):內(nèi)蒙、河北、重慶,所以X的取值為0,1,2所以,,隨機變量X的分布列如下:【點睛】本題考查數(shù)據(jù)的處理以及離散型隨機變量的分布列與數(shù)學期望,審清題意,細心計算,屬基礎(chǔ)題.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論