新疆哈密市石油高級中學2024-2025學年高三第六次適應性訓練數(shù)學試題試卷含解析_第1頁
新疆哈密市石油高級中學2024-2025學年高三第六次適應性訓練數(shù)學試題試卷含解析_第2頁
新疆哈密市石油高級中學2024-2025學年高三第六次適應性訓練數(shù)學試題試卷含解析_第3頁
新疆哈密市石油高級中學2024-2025學年高三第六次適應性訓練數(shù)學試題試卷含解析_第4頁
新疆哈密市石油高級中學2024-2025學年高三第六次適應性訓練數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

新疆哈密市石油高級中學2024-2025學年高三第六次適應性訓練數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]2.下列函數(shù)中,值域為R且為奇函數(shù)的是()A. B. C. D.3.已知,,則的大小關系為()A. B. C. D.4.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根5.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.6.設,其中a,b是實數(shù),則()A.1 B.2 C. D.7.若復數(shù)為虛數(shù)單位在復平面內(nèi)所對應的點在虛軸上,則實數(shù)a為()A. B.2 C. D.8.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱9.設f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.10.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.111.一個盒子里有4個分別標有號碼為1,2,3,4的小球,每次取出一個,記下它的標號后再放回盒子中,共取3次,則取得小球標號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種12.已知實數(shù),則的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足則點構(gòu)成的區(qū)域的面積為____,的最大值為_________14.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.15.已知角的終邊過點,則______.16.已知數(shù)列的各項均為正數(shù),滿足,.,若是等比數(shù)列,數(shù)列的通項公式_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中國古代數(shù)學經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結(jié)論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標方程;(Ⅱ)設點,直線與曲線相交于,,求的值.19.(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項公式;(2)設數(shù)列的前n項和為,數(shù)列的前n項和為證明:.20.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.(1)求的分布列及數(shù)學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.21.(12分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標準方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.22.(10分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

作出可行域,表示可行域內(nèi)點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.本題考查簡單的非線性規(guī)劃.解題關鍵是理解非線性目標函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結(jié)論.2.C【解析】

依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數(shù),排除;B.,值域為,奇函數(shù),排除;C.,值域為,奇函數(shù),滿足;D.,值域為,非奇非偶函數(shù),排除;故選:.本題考查了函數(shù)的值域和奇偶性,意在考查學生對于函數(shù)知識的綜合應用.3.D【解析】

由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.4.A【解析】

只需將“存在”改成“任意”,有實根改成無實根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結(jié)論,是一道基礎題.5.C【解析】

設過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學計算能力,屬于中檔題.6.D【解析】

根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D本題考查復數(shù)模的計算,考驗計算,屬基礎題.7.D【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內(nèi)所對應的點在虛軸上,,即.故選D.本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.8.C【解析】

依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調(diào).故正確的只有C,故選:C本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調(diào)性,屬于基礎題.9.D【解析】

利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎題.10.C【解析】

根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.本題考查了雙曲線的幾何性質(zhì)及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.11.C【解析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標號均不為4的球的情況,進而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標號最大值是4的取法有種,故選:C本題考查古典概型,考查補集思想的應用,屬于基礎題.12.B【解析】

根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.811【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎題.14.【解析】

設:,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應用,可列式得到,解得.故答案為:.本題主要考查點到直線的距離公式的運用,并結(jié)合圓的方程,垂徑定理的基本知識,屬于中檔題.15.【解析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎題.16.【解析】

利用遞推關系,等比數(shù)列的通項公式即可求得結(jié)果.【詳解】因為,所以,因為是等比數(shù)列,所以數(shù)列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數(shù)列,所以,故答案為:.該題考查的是有關數(shù)列的問題,涉及到的知識點有根據(jù)遞推公式求數(shù)列的通項公式,屬于簡單題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析,是,,,,;(2)【解析】

(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線為x,y,z軸建立直角坐標系,設,由,解得,得到,從而得到,然后求得平面的一個法向量,代入公式求解.【詳解】(1)因為是球的直徑,則,又平面,∴,.∴平面,∴,∴平面.根據(jù)證明可知,四面體是鱉臑.它的每個面的直角分別是,,,.(2)如圖,以A為原點,,,所在直線為x,y,z軸建立直角坐標系,則,,,,.M為中點,從而.所以,設,則.由,得.由得,即.所以.設平面的一個法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.18.(Ⅰ),;(Ⅱ).【解析】

(Ⅰ)由(為參數(shù))直接消去參數(shù),可得直線的普通方程,把兩邊同時乘以,結(jié)合,可得曲線的直角坐標方程;(Ⅱ)把代入,化為關于的一元二次方程,利用根與系數(shù)的關系及參數(shù)的幾何意義求解.【詳解】解:(Ⅰ)由(為參數(shù)),消去參數(shù),可得.∵,∴,即.∴曲線的直角坐標方程為;(Ⅱ)把代入,得.設,兩點對應的參數(shù)分別為,則,.不妨設,,∴.本題考查簡單曲線的極坐標方程,考查參數(shù)方程化普通方程,明確直線參數(shù)方程中參數(shù)的幾何意義是解題的關鍵,是中檔題.19.(1)(2)證明見解析【解析】

(1)因為,所以,所以,即,又因為,所以數(shù)列為等差數(shù)列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,.(2)設數(shù)列的前n項和為,則兩式相減得,所以,設則,所以.20.(1),ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

ξ的數(shù)學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21.(1);(2)見解析【解析】

(1)根據(jù)已知可得,結(jié)合離心率和關系,即可求出橢圓的標準方程;(2)斜率不為零,設的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標關系,求出方程,令求出坐標,要證、、三點共線,只需證,將分子用縱坐標表示,即可證明結(jié)論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設,,所以,直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點共線.解法二:當直線的斜率不存在時,由題意,得的方程為,代入橢圓的方程,得,,直線的方程為.則,,,所以,即,,三點共線.當直線的斜率存在時,設的方程為,,,聯(lián)立方程消去,得.由題意,得恒成立,故,.直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子所以.所以,,三點共線.本題考查橢圓的標準方程、直線與橢圓的位置關系,要熟練掌握根與系數(shù)關系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論