線性代數(shù)-同濟四版-習題參考答案_第1頁
線性代數(shù)-同濟四版-習題參考答案_第2頁
線性代數(shù)-同濟四版-習題參考答案_第3頁
線性代數(shù)-同濟四版-習題參考答案_第4頁
線性代數(shù)-同濟四版-習題參考答案_第5頁
已閱讀5頁,還剩262頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

線性代數(shù).同濟四版—習題參考答案

線性代數(shù)(同濟四版)習題參考答案

黃正華

Emai1:huangzh@whu.edu.cn

武漢大學數(shù)學與統(tǒng)計學院,湖北武漢430072

WuhanUniversity

目錄第一章行列式第二章矩陣及其運算

第三章矩陣的初等變換與線性方程組

第四章向量組的線性相關(guān)性

第五章相似矩陣及二次型117334869

第一章

您發(fā)現(xiàn)有好的解法,請不吝告知.

行列式

課后的習題值得我們仔細研讀.本章建議重點看以下習題:5.(2),(5);7;8.(2).(這幾個題

號建立有超級鏈接.)若

1.利用對角線法則計算下列三階行列式:????????(1)????

999999999999(3)9999

????

????

201??

??

1?4?1????;

??

?183??

????

111??

??

abc????;

??

a2b2c2??

99Q99999⑵999Q

999999999999⑷Q999

????

????

abc??

??

bca????;

??

cab??xyx+y

yx+yx

????x+y??

??x????.

??y??

解:⑴

????

????

01????2

????

??1?4?1??

????

????

???183??

=2X(?4)X3+0X(?1)X(?1)+1X1X8?OX1X3?2X(?1)X8?1X(?4)X(?1)=?24+8+16?4=

?4.(2)

????

????

??abc??

????

??bca??=acb+bac+cba?bbb?aaa?ccc=3abc?a3?b3?c3.

????

????

??cab??

????

111??

??222222

abc????=bc+ca+ab?ac?ba?cb=(a?b)(b?c)(c?a).

??

a2b2c2??

yx+yx

????x+y??

??333x????=x(x+y)y+yx(x+y)+(x+y)yx?y?(x+y)?x

??y??

=3xy(x+y)?y3?3x2y?3y2x?x3?y3?x3=?2(x3+y3).

2.按自然數(shù)從小到大為標準次序,求下列各排列的逆序數(shù):(1)1234;(2)4132;(3)3421;

(5)13???(2n?l)24???(2n);(6)13???(2n?l)(2n)(2n?2)???2.解

(1)逆序數(shù)為0.

(2)逆序數(shù)為4:41,43,42,32.

1

(4)2413;

(3)

99999999999??999

(4)

??????x????y????

??x+y

2

(3)逆序數(shù)為5:32,31,42,41,21.(4)逆序數(shù)為3:21,41,43.(5)逆序數(shù)為

n(n?l)

:第一章行列式

32................................................................................1

個52,54.........................................................................2

個72,74,76......................................................................3

個................................................................................

.....(2n?l)2,(2n?l)4,(2n?l)6,...,(2n?l)(2n?2)...............(n?l)個

(6)逆序數(shù)為n(n?D:

52

54.........................................................................2

72

74,76......................................................................3

(2n?l)2,(2n?l)4,(2n?l)6.....(2n?l)(2n?2)(n?l)個

.....(2n)2,(2n)4,(2n)6,(2n)(2n?2)................................(n?l)個

3.寫出四階行列式中含有因子alla23的項.

解:由定義知,四階行列式的一般項為

(?1)talpla2p2a3p3a4p4,

其中t為plp2p3p4的逆序數(shù).

由于pl=l,p2=3已固定,plp2p3p4只能形如13????,即1324或1342.對應(yīng)的逆序數(shù)t分別

0+0+1+0=1,或0+0+0+2=2.

所以,?alla23a32a44和alla23a34a42為所求.

4.計算下列各行列式:????

??4124??

????

????

??1202??

??(1)????10520??;????

????

??0117??

????

????

ae?????abac

????

??;(3)??bd?cdde????

????

??bfcf?ef??

??

9QQ9999Q(2)99QQ

99Q99999999999Q9⑷9Q9Q

999999

2021

4207

????

????

????

????

????rl?r2

99Q9=====?99Q9

????

????

????

140

21102212407

??

1999999

3?121????;1232????

??

5062??2

1

4

a

1

??0??????

?lblO????.O?lcl????

??

OO?ld??

1000

??

202????

??

?72?4?????152?20????

??

117??

解:⑴

??

999999999999999999

410

121

105105

????

????

????

????

????r2?4rl

99QQ=======999Q9p3^1Or1

????

????

????

線性代數(shù)(同濟四版)習題參考答案

????????r2?r4??======????

99Q999

(2)

9999999999999999

0117??r4+7r2????=="=??????r+15r320?152?20????

????????0?72?41

2

2

215210

120120

43643011220200

999999999999999999C^9C2Q9QQ--=99QQ=9999QQ99Q9999Q99999Q9999

??=0.????????

1000215

2100120

01179436

????

??2??????

????

9979999=17X9999985999999

????????450202

999999999999999999r49r29QQ9----9QQQ-Q9999Q999Q9Q9Q

21212010000121

0111434

??

299999979999=0599999Q59QO2OO99999999999999999999

3

9999999Q99999Q99999999999999r4Qr1QQ====9Q99

999999

3?123?123?12

3?12

(3)

????

ae???abac

??

??bd?cdde??????bfcf?ef

????

???Hl??r2+rl

=====adfbce????002r3+rl

??

??020

99Q99999999999Q9Q999a9100

lb?10

9999999999999999

e??l?????bc???ll

99999999

??=adf??b?ce??=adfbce??1?11????????????????????b??1c?e??1?1????????????02?????

???=?adfbce????=4abcdef.????????20????001

999999999999999999999

9Q9999Q999999Q9QQ9r1+ar2===^=

0?10

l+abb?l

ale

001??

999999999999999999

9QQQ999999Q9999?

(4)

01c

?ld????

??l+abaO??按第1列

=======(?1)(?l)2+l??cl???l展開??

??0?ld????ad按第3行3+2??l+ab====(?l)(?1)??

???1展開1+cd

00?ld

????

????

ad??l+aba??

??c3+dc2????===??c1+cd???1??=

????

????0?10??????

??=abcd+ab+cd+ad+l.??

99Q9999999999999

5.??證明:????22??abb????a

????

??=(a?b)3;(l)??2aa+b2b????

????

??111??

??????證明??2??22??abb????aab?a2b2?a2??a

??c2?cl????

??2aa+b2b??=====????2ab?a2b?2a??c??

??3?cl????

??l??10011??

99Q999

??a??ab?a2b2?a2??

????3+l??=(?l)??=(b?a)(b?a)????

??l??b?a2b?2a??

99999999

9QQ9999Q

??xyz????ax+byay+bzaz+bx??

99999999

??=(a3+b3)??yzx??;(2)??ay+bzaz+bxax+by????????

99999999

??zxy????az+bxax+byay+bz??

??

99Q99999999999

??b+a????

??=(a?b)3.2??

4第一章行列式

-99999999

??ax+byay+bzaz+bx????xay+bz

??按第1列????

??ay+bzaz+bxax+by??=====a????=??yaz+bx??

??分裂開????

??az+bxax+byay+bz????zax+by

9QQ9999Q

99Q99999

??yzaz+bx????xay+bzz??

??????再次2????+0+0+b2??zxax+by??==a??yaz+bxx????????裂開????????

??xyay+bz????zax+byy??

999?9999?999999999xy79999yZX99

??????再次3??3????==a??+byzx??zxy????????裂開????????

99zxy9999xyz9999^w99999w999^9^9999xyz9999xyz9999xy999ww999

??+b3(?l)2??yzx??=(a3+b3)??yz=a3??yzx??????????

999999999999/

????

????

az+bx????y

??????ax+by??+b????z????

??xay+bz??

??

??

az+bx??

??

ax+by????

??

ay+bz??

ay+bzaz+bxax+by

????z????x????.??y??

此題有一個“經(jīng)典”的解法:

999Q99

999Q99

??ax+byay+bzaz+bx????ax

999999

??ay+bzaz+bxax+by??二??ay??????

99Q999

??az+bxax+byay+bz????az

9999999999

999999999999xyz9999yzx99999999999999

??+b3??zxy??=a3??=a3??yzx??????????

????????????zxy????xyz????

????

????

??xyz??

????

??.=(a3+b3)??yzx????

??????zxy??

ayazaxxyz

yzx

azaxayzxy

99Q9999?

????bybz????

??+??bzbx????????

99?Qbxby999999999999999999+b31)

??

??

xyz??

??

yzx????

??

zxy??

????bx??

??by??????bz??

這個解法“看上去很美”,實則是一個錯解!我們強調(diào),行列式不能作這種形:.式.上的加法.

??????????????all...aln????bll...bln????all+bll...aln+bln????????????????.????

9Q9999999QQ9999QQ9+=9QQ9999999999Q99999Q99Q9Q9anl?

??ann????bnl???bnn????anl+bnl???ann+bnn??

99Q99999(3)99QQ

999999

a2b2c2d2

(a+l)2(b+l)2(c+l)2

(a+2)2(b+2)2(c+2)2

(a+3)2????

??

(b+3)2????=0;

2??(c+3)????

(d+3)2??

(a+3)

2

證明:

(d+l)2(d+2)2??

??a2(a+l)2(a+2)2????2??b(b+1)2(b+2)2??

??c2(c+l)2(c+2)2????2

??d(d+l)2(d+2)2

??

??a22a+12????2b2b+12c3?2c2??

二二二二二二??c4?3c2????c22c+12

??2

??d2d+12

(b+3)2(c+3)2

(d+3)2??6??????6??兩列成比例??======0.??6????6??

????

????

????

????

99cj?c1Q9Q9===:=99Q999j=2349999

????

????

a

2

2a+12b+12c+12d+l

4a+44b+44c+44d+4

6a+96b+96c+96d+9

b2c2d2

??

99Q99999999999Q9Q9

線性代數(shù)(同濟四版)習題參考答

案??????????(4)??????????laa2a41bb2b41CC2c4??l??????d????=(a?b)(a?c)(a?d)(b?c)

(b?d)(c?d)(a+b+c+d);2??d????4??d5

證明:

????????????????????laa2a41bb2b41cc2c41dd2d4??????????????????cj?cl????======?

???j????=2,3,4??????????laa2a40b?ab2?a2b4?a40c?ac2?a2????0????d?a????22??d?a??

??d4?a4??c4?a4

????????b?ac?ad?a??????展開

rl??222222??===??c?ad?a??b?a????22??2222222??b(b?a)c(c?a)d(d?a)??????????!!

1??????????=(b?a)(c?a)(d?a)??b+ac+ad+a??????2????b(b+a)c2(c+a)d2(d+a)?????????

?100????????c2?cl??====(b?a)(c?a)(d?a)??b+ac?bd?b????c3?cl????22222??b(b+a)c(

c+a)?b(b+a)d(d+a)?b(b+a)??

????11展開

rl??=====(b?a)(c?a)(d?a)(c?b)(d?b)??2??(c+bc+b2)+a(c+b)(d2+bd+b2)+a(d+b)

=(a?b)(a?c)(a?d)(b?c)(b?d)(c?d)(a+b+c+d).????????????????????????(5)??????????

??xO...Oan?lx...0an?10?l...0an?2........................00...xa2??????????0???

?..??=xn+alxn?l+??,+an?lx+an..?????l????x+al??0

證明:方法一.設(shè)法把主對角線上的x變?yōu)?,再按第一列展開.

9999999999999999pn_999999999999?999

??????????????cn?i+xcn??=====????????????????xO...OOanxO...00an?lx...00an?l

?lx...00an?10?l...00an?20?l...00an?2..............................................................................

................................00...x0a300...x0a3????00??????00????.???????10??x?l??

????a2x+al??00...?10x2+alx+a2????0??????0????..??.??????0???l??????x+al??

6第一章行列式

99999999999

9999999999x910???000"W0xl???000QQ

=cn=?=2=+=xc=n=?=1=????…

9999999999QQQ00???091"000???0091^9^99

??anan?lan?2,??x3+alx3+a2x+a3x2+alx+a2x+a??

1??

9Q9999QQJ?.?9999QQ...99

??....????00?,???????00??,??xn+alxn?l+??,+an?lx+anxn?l+alxn?2+???+

an?2x+an?l???

999Q9999Q1???0Q999999

??0???0??

=(xn+alxn?l+???+an?lx+an)(?l)n+l??0??????...????

99

9999Q9

????

??0????10??

??0???0?l????

=(xn+alxn?l+???+an?lx+an)(?l)n+l(?l)n?l

=xn+alxn?l+???+an?lx+an.

方法二.設(shè)法把?1全部變?yōu)?,得到一個下三角矩陣.若x=0,則Dn=an.等式成立.

若x=0,則

9QQ999

????

??XOO???00??

??0x?l???00??????

Dc2+1??

n===c=l=?99999

9999

9Q99

????

??000???X?l??

??a??

nan?l+anan?2???a2x+al??????????x00???00????????0x0???00????==c3=+l??

==c=2=99?9

99

??.........??..??????????000???x?l??????anan?l+anan?2+an?l+an???a2x+a??

1??

99999999x00???

????0x0???00????

=9999

99

9999999999

????000???xO????

??anan?1+anan?2+an?1

+an???P2P??

1??

這里,

P2=a2+a3

x+a4an

x+???++x,00...?10x2+alx+a2??0????0????.??..??????0???????l????x+a??l??

線性代數(shù)(同濟四版)習題參考答案

Pl=x+al+

a2a3an

++???++.xxx

7

得到下三角陣,所以

Dn=xn?l?Pl=xn+alxn?l+?,?+an?lx+an.

方法三.用遞歸法證明.記

??

9999999Q9999I)n=99

9999999999

xO...Oan

?lx

…Oan?l

0?1

...0an?2

00

...xa2

??

???????[??

??

x+al??0

99Q99999999999Q9Q999Q9

一??_

展開cl??.Dn===x??

??0????

??an?l

?1...0an?2

…xa2

????

9999910???0999999999999x91???99n+1"為夕+an…??.?1??..????????

??0x+al??0???

00

00

X?1

=xDn?l+an(?l)n+l(?l)n?l=xDn?l+an.

所以,Dn=xDn?l+an.由此遞歸式得

Dn=xn+alxn?l+?,?+an?lx+an.

方法四.按最后一行展開.先看an?i

9QQ9999QQQ999Q99Q999999Qaaa

n

n?l

n?2

的代數(shù)余子式.因為

99

?????????????????????????????????????????]????

x?l??

a2x+

al....

?lx

?lx

?lx

an?(i?l)

an?ian?(i+l)

劃掉an?i所在的行和所在的列,左上角是iXi的方塊,右下角是(n?i?l)X(n?i?l)的方塊,

余下全為0.

則an?i的代數(shù)余子式為(注意到an?i處在第n行、i+1歹!J)::::::::::

????

??????????…??????.X…????丁+「+1"""=xi(91

??..?1??????????..??????.?1??????

??????x?l??

(n?i?l)X(n?i?l)??x??

iXi所以,Dn按最后一行展開,得到

Dn=an+an?lx+an?2x2+???+an?ixi+?,,+a2xn?2+(x+al)xn?l

8第一章行列式

=xn+alxn?l+,??+an?lx+an.

方法五.針對cl作變換.

9999999999999999pn_9999

99999999999999999999999999

cl+xc2??===????

9999999999999999999999Q99?

cl+x2c3??======????

9QQ9999QQQ99

x00...Oan

0x20

???0

00x3

...0

an+an?lx+an?2x2

?lx0...0an?l

0?lx

…0an?2

?lx0...0

0?lx

…0an?2

?lx0...0an?1000...xa2

??

??0??????0????0??

999999

???!????

??

x+al??................

000...xa20?lx...0an?2

an+an?lxan?l

??

??0??????0????0??

9999QQ

???!????

??

x+al??.......................................................

000...xa2

??

??0??????0????0??

999999

???1????

??

x+al??

=?..????0??????0??????0二????.??.一

?lx0...0an?l

0?lx

…0an?2

000

…xa2

??

??0??????0????0??

9?9......9...9.....9...9..

???1????

??

x+al??

這里,P=an+an?lx+an?2x2+???+alxn?l+xn.

再按第一列展開,得

Dn=xn+alxn?l+?,?+an?lx+an.

6.設(shè)n階行列式D二det(aij),把D上下翻轉(zhuǎn)、或逆時針旋轉(zhuǎn)90?、或依副對角線翻轉(zhuǎn),依次

999999999Q99

??ann???aln????aln???ann????anl???ann??

999999999999

9999999999999999D3=9999D2="Dl=99999999999999

9999999Q9999

??anl???all????all???anl????all???aln??

證明D1=D2=(?1)證明:??

??anl???ann????....Dl=??..????

??all???aln

n(n?l)

????a????ll????????anl??n?l次行的相鄰互換??n?l??=========(?1)??.??使r換

到第一行??.n????.??????a21

D,D3=D.

alnann...a2n

9999999999999999999Q99

線性代數(shù)(同濟四版)習題參考答案

99Q999all???aln999999999999a21???

n?2次行的相鄰互換??n?ln?2??a=========(?l)(?l)??nl???ann??=???

??.??使rn換到第二行.??.??..????.??????a31???a3n??

??????all???aln??????????n(n?l)..??=(?1)1+2+???+(n?2)+(n?l)D=(?l)D...=(?

l)n?l(?l)n?2???(?1)??.????.??????anl???ann??

9

同理可證

D2=(?l)

r)(n?l)

????all????.??.??.????aln

anl...ann

n(n?l)????????n(n?l)n(n?l)

??=(?1)DT=(?1)D.??????(?1)

n(n?l)

D3=(?l)

n(n?l)

D2=(?l)

D=(?l)n(n?l)D=D.

7.計算下列各行列式(Dk為k階行列式):

????

????al????

????..??,其中對角線上元素都是a,未寫出的元素都是0;(l)Dn=??.??????????la??

解:方法一.將cn作n?l次列的相鄰對換,移到第二列:

9QQQ9999

??a0???01????a0???01??

99Q9999?

9QQ9999Q

??10???Oa????Oa???00??

999Q9999

??????.Dn二外20分???009^"=C?l)999999999999Q99999?

?..??00???a0??

99999999

??00???a0????10???0a??

再將rn作n?l次行的相鄰對換,移到第二行:

??

??alO???0????

??laO???0??

n?ln?l??00a???ODn=(?l)(?1)??

9Q9Q9999

??000???a

方法二.

9Q9Q99Q999999QDn=99

9999999Q99

a0...01

???

??

l??????00??

9Q9Q999Q99a099

??0a??0

9QQ9999QQ9

99999999a???

99QQa199Q9999Q?99QQQ

9QQQ=Q999991a99999Q9Q990???99

????

=(a2?l)an?2.

(n?2)X(n?2)

a???

...00

????a????展開cl

======a????

????

99

9999999Q99999Q999999n+1994-lX⑴1)????????????/??1)X(n^l)

0???00

10

a,

...0

aO

??

999Q99Q9QQ999Q9Q99Q9

(n?l)X(n?l)

10第一章行列式

????a????展開rlnn+1(n?l)+l??=::a+(?l)X1X(?l)??????=an?an?2.

99Q999999999

(2)Dn=??

99999999

xa...

a

???

aa

Q9999999999999?99999999

(n?2)X(n?2)

Y??????

aa,?,x

解:方法一.將第一行乘(?1)分別加到其余各行,得

????xaa????

??a?xx?aO????Ox?aDn=??a?x??...??......????

??a?xOO

??

??????0??

??0????,

??.??..????x?a??a

再將各列都加到第一列上,得

??

??x+(n?l)aaa??????Ox?aO????OOx?aDn=????...??......??????000

方法二.將各列都加到第一列得

??

??x+(n?l)aa???????

??x+(n?l)ax?????Dn=??.

??

??x+(n?l)aa???再將第一行乘以(?1)分別加到其余各行,得

9999999Q99

????????Dn=x+(n?l)a??

999Q999999

10...0

a0

...0

aO

??

??????O??

??????O????=x+(n?l)a(x?a)n?1.

??.??..????x?a??a

aa...x

????

????

????

????

9999999Q9999

??=x+(n?l)a??

????

????

????

????

la,??aa

...x

lx???

..........1

a

??

9QQ9999QQQ999Q99Q999

Ox?a

x?a???...0

???

??

a????

??0??

??????0????=x+(n?l)a(x?a)n?1.

??.??..????x?a??

方法三.升階法.

??

??la????

??0x????

Dn-??Oa

9999Q999

??0a

aa

aaa...x

x???

..a

??

99Q999999999999999999999

(n+1)X(n+1)

999Q99Q9QQ99

ri?rl??======??i=2,3,?????

99999999

1?1...?1

aO

...0

aO

?lx?a

x?a???

...0

???

??

a????

??0??

??0????

??.??..????x?a??

(n+1)X(n+1)

線性代數(shù)(同濟四版)習題參考答案

若x=a,則Dn=O.若x=a,則將

1

cj

11

加到cl,j=2,3,???,n+1:

????

????l+anaa???a????????

??Ox?aO???0??

????

??00x?a???0??Dn=????

9999Q9999999

????

??000???x?a??

(n+1)X(n+1)

????

????nan

=l+(x?a)=x+(n?l)a(x?a)n?l.

x?a

??

??an??

二??.??.

(a?l)n(a?l)n?l

...a?ll

(a?n)n(a?n)n?l

...a?nl

??

999Q9999QQ99

??;(提示:利用范德蒙德行列式的結(jié)果.)??????????

(3)Dn+l

解:從第n+1行開始,第n+1行經(jīng)過n次相鄰對換,換到第1行;第n行經(jīng)(n?l)次對換換到

第2

+1)

行.經(jīng)n+(n?l)+???+l=n(n次行交換,得(或者直接由題6的結(jié)論)

??

??an

la?l...(a?l)n?l(a?l)n

la?n

...(a?n)n?l(a?n)n

??

??????????????,??????????

Dn+l=(?l)

n(n+l)

此行列式為范德蒙德行列式.

對照范德蒙德行列式的寫法知,這里的a=xl,a?l=x2,...,a?(n?l)=xn,a?n=xn+l.則

xi=a?(i?l),xj=a?(j?l).所以

Dn+l=(?l)

=(?1)=(?1)=(?1)=

二??

n(n+l)

??

n+l??i>j??l

??

xi?xj

??

n(n+l)

????

????(a?i+l)?(a?j+l)??

??

?(i?j)

X

??

n+l??i>j??l

n+l??i>j??l

n(n+l)

n+l??i>j??l

n(n+l)

X(?1)(i?j).??bn????

????????????()??:

n+(n?l)+???+1

(i?j)

??

n+l??i>j??l

alcl

Obldl

(4)D2n

解:方法一.將c2n作2n?l次列的相鄰對換,移到第二列;再將r2n作2n?l次行的相鄰對換,

移到

12第一章行列式

第二行:

9Q9Qa9Qn9Q9?cn9QQ99QQ9999Q

=(?l)2n?l(?l)2n?l????

9QQQQ9Q999999Q9999

bndn

an?l

???alcl

cn?l

bldl

...dn?l

??,bn?l

9999999999999999999999

??=(andn?bncn)D2(n?l),????????????????????

D2n

????a??l

又n=l時D2=??

??cl??bl????

??=aldl?blcl,所以dl??

D2n=(andn?bncn)???(aldl?blcl)=

n??i=l

(aidi?bici).

這個方法與教材P.15的例11相同.本題的第⑴小題也用到了此方法.方法二.

??

99anQ19Q99999Q9999990

展開rl??======an??

999Q999999

??cn?l????O

展開c2n?l

alcl

0???bldl

bn?10...

D2n

dn?10

Odn

????

????

????

????

????

????

????

????

????

????2n+l

bn????+(?l)

????

????

????

????

????

????

????

????

Oan?l

alcl

..bldl

bn?l

00

Ocn

cn?10

dn?10

??

999999999999999999999999999999999999

=======:==andnD2n?2?bncnD2n?2.

由此得遞推公式:

D2n=(andn?bncn)D2n?2,

即D2n=(aidi?bici)D2.

????i=2

n??ab????l????l

(aidi?bici).而D2=????=aldl?blcl,得D2n=

??cldl??

i=l

(5)Dn=det(aij),其中aij二|i?j|;解:由aij=|i?j|得

????0123??????1012????

101??2

??Dn=det(aij)=??.......??....??

??n?2n?3n?4n?5????

??n?ln?2n?3n?4

??n?l????

??n?2????

??n?3??

??.??.??.

??0??

n??

線性代數(shù)(同濟四版)習題參考答案

??

???1111???????

???1?111???????

?1?11???ri?ri+l???l

===="1-l2???9999

??

???1?1?1?1???????

??n?ln?2n?3n?4?????

???1000????

???l?200????

?2?20???lcj+cl

====??....j=2,3,?????....??,

??

???1?2?2?2????

??n?12n?32n?42n?5

??

??l+a??l????l??

(6)Dn=??..??.??

????1

解:升階法.

=(?l)n?l(n?l)2n?2.

999Q???1999Q99??.p9

0.??,其中ala2???an=..??.??

??

???l+an??100.,.01?l...?l

11+al

1

...110...0

10a2

...0

lll+a2

...1...........................................

.............................................100

...an

??????????????????????????????01111+an

??

999999999999999999999999

(n+1)X(n+1)

13

111...10

??????????????????????????????????()????

??0????

??0??

??一??一??一

??n?l??

Il+a2

…1??

99Q999999999Dn=99

999999999999999QQ9999Q

ri?rl??======??i=2,3,?????

99Q9999?

?lal

??

??1+111?????l????OalO???1

cl+c2????l

0a2???=======???1

99999999

???100?????

??1+1+1+???+l??12n????01

cl+cj+l??j??0========??j=2,3,?????.??..??

????0

(n+1)X(n+1)

(n+1)X(n+1)

10a2

...0

??

(n+1)X(n+1)

n????l??

=(ala2???an)1+.

aii=l

14第一章行列式

8.用克萊姆法則解下列方程

組:??xl+x2+x3+x4=5,????x+2x?x+4x=?2,1234(1)?2x1?3x2?x3?5x4=?2,????3xl+x2+2x3+l

1x4=0;

解:

999999999999999999HQ999H9999H999?HP^lllllll999999999999999999999999999999

????12?14????01?23????01?23????01?2??3??=????=????=????=????2?3?l?5????0?5?3?7

99990091389999009l954"=914299999999999QQ999999Q999999QQ999Q9Q3H42992119Q9Q0

92?]1111191910W^W?99999Q9999Q9Q9

?????5?1?10????5?1?10?????22?14????0????????5?5?18????=????=??0?5?18??=???40??

二?142?=9910999293?1959Q9??2935999999999928999999999999999999999999999252899992

30?22????01211????0100??

9999Q9999Q99999Q999Q999999999915H99H999????]??????????????????

9Q9Q991929149Q9Q097923WW09132"990913299:Z9284-99999999999999=99:Z99:::99=999999

9999992929P59Q990912^3^7^^00231P^9OO919199999^9999WW"99^9^9^9W999999^

30000?284??0039310?15?18211??????????????1115??51??????ll????????????12?l?2???

?12?24??????D4=??=????2?3?1?2??=142.??2?3?2?5??=?426;??????????????????31??312

O??O11??DD1D2D3

所以,

xl二

??5xl+6x2???????xl+5x2+6x3

(2)????????D1=1,Dx2==l,=0,=0,D2=2,Dx3=D3=3,Dx4=D4=?l.Dx2+5x3+6x4x3+5x4+6x5=0,

x4+5x5=l.

555966夕569990=56夕夕9515??????1??????5??二5r)4X????0??????????60

999Q9999999915展開

c??l=====5D4X4?????=??01????????????00????????0????6????=5D4X4?6D3X3.??5???

???????????????????解:系數(shù)行列式06510065D5X565651

由遞歸式D5義5=5D4X4?6D3X3知,

D3X3=5D2X2?6D1X1=5(25?6)?6X5=65,

D4X4=5D3X3?6D2X2=5X65?6X19=211,

線性代數(shù)(同濟四版)習題參考答案D5X5=5D4X4?6D3X3=5X211?6X65=665.

99Q999

????16000????

??6000??????????05600????

????

????

D5600????1=????01560????

????

??1560????????00156??=展開=D??

4X4+??

????

????

????

????100150156??

????

=D??4X4+64=211+

????64=1507.

????51000??????

????600????????10600????????l????000??????D560????5

????

2=??????00560????

??二展開==c=2=????0??+(???1600????

????????????00156????156560??

??????0??1)5+2????

????0??

??010??????????15??00150156????=展開=c2

??===?D3X3?5X63=?65?1080=?1145

999Q

????56100????

????????0????????15000????????150????0D??0160????56

????

3=??????01060????=展開==c=3=(?1)1+3??????150

????06??????+(?1)5+3????6??00056??????????05

??00115??????0015????01

??????005

二二展開二c

??==2=D2X2?6X6XD2X2=703.

????

????56010??????

9Q9999i5609999999915600999999999999560D01509999994=99999999^Ff:c4"

??01500??======(?1)1+4????6??????001+(?1)5+4????15

6??

9999999999015W00106999999

??00015??????0005????????001二二展開二c

??==4=?5?6D3X3=?5?6X

????65二?395.

????56001????

9Q156(P-9m15609WW99^^9995600999^"D569999

????0????

5=??0????

夕—?展開

??01560??==c=5=(?1)1+5????01????156??????=??15??6????00150??????00??+??????01

5??????00011????

????0001????????0015????

=1+D4X4=1+211=212.

所以,

x2121=1507

665,x2=?1145

665,x3=703

665,x4=?395

665,x5=665.

????Xxl+x2+x3=0,

9.問人,u取何值時,齊次線性方程組??xl+ux2+x3=0,有非零解?

9xl+2Ux2+x3=0

16第一章行列式

解:系數(shù)矩陣

999999Q9999999入H99Q9入9999r39r19999=0=99==99991g199=9919999999912.19999Q9

?????11??????3+2??入1????U1??二U(?1)??11??U0??????????=U(1?入).??

要使齊次線性方程組有非零解,則D=o,即

u(1?入)=0,

得u=0或X=1.???2x2+4x3=0,??(1?x)X1

10.問x取何值時,齊次線性方程組2x1+(3?X)x2+x3=o,有非零解????x+x+(l?X)x=0.123

解:系數(shù)矩陣

?????24??1?X??D=??3?X1??2????111?X????3+1???3+入=1X(?1)????!?X???????????

?4??????1今A93+X??c29C19??9?9=?9===??219X1??99=9??999??9?991019X???999?99?4

??3+3??1?x?3+X??+(1?X)(?1)????21?X1????????????=(X?3)?4(1?X)+(1?X)3?2(1

?X)(?3+X)=(l?X)3+2(l?X)2+X?3

=A(X?2)(3?X).

齊次線性方程組有非零解,則D=0,即

X(X?2)(3?X)=0.

得X=0,入=2或X=3.

第二章1.已知線性變換:矩陣及其運算????xl=2yl+2y2+y3,

x2=3yl+y2+5y3,???x=3y+2y+3y,3123

求從變量xl,x2,x3到變量yl,y2,y3的線性變換.解:方法一.用消元法解方程,得出

yl,y2,y3.略.方法二.解矩陣方程.由已知:

??????x221y?1????I??x2?=?315??y2?,??????

323y2x3

故???

2

1

21??l??????y2?l???y2?=?3???y23?5??3yx?7?49??l??l?????x2?=?63?7????y2?.??y332?4

x3

即????yl=?7xl?4x2+9x3,

y2=6xl+3x2?7x3,???y=3x+2x?4x.3123

方法三.用克拉默法則解方程.系數(shù)矩陣

??????221??D=????315????323

以11?llPxZy1

01????0??????c1?2c3?????7?95??=l.??=====????c2?2c3???????????3?43????212?????

???21???????x2??????23????????21??????+x3??????15????????=?7xl?4x2+9x3;??同理

得y2=6xl+3x2?7x3,y3=3xl+2x2?4x3.2.已知兩個線性變換

????xl=2yl+y3,

x2=?2yl+3y2+2y3,???x=4y+y+5y,3123????yl=?3zl+z2,y2=2zl+z3,???y=?z+3z,323

求從zl,z2,z3到xl,x2,x3的線性變換.解:方法一.直接代入.比如:

xl=2yl+y3

=2(?3zl+z2)+(?z2+3z3)=?6zl+z2+3z3.

17

18第二章矩陣及其運算

方法簡單,但我們應(yīng)盡可能使用本章學習的矩陣知識.

方法二.由已知

???x2?l???x2?=??2???x34

???y?3?l???y2?=?2???y20所以,

?

?

?

??

?

?

??0

1

?

y

??l???32???y2?,

15y2

???10z

??l???01???z2?.

?13z3

??

??

?

x201y201?310z

?l????l??????l??x2?=??232??y2?=??232??2??01???z2??????????x3415y24150?13z3

????

z?613

??1??

???=??12?49??z2?.

?10?116z3

?

???xl=?6zl+z2+3z3,x2=12zl?4z2+9z3,???x=?10z?z+16z.

3123

?

?

?

?

123111

????

???3.設(shè)A=?ll?l?,B=??l?24??,

0511?ll

求3AB?2A及ATB.

解:

?

??

3?

?

????

??20??.?222

12111

???

??3AB?2A=3??11?1???1?2

051?ll

???

11058

???

??=3??0?56??2?ll

l?1290

9

??

Ill

??

?4???2?11?11?111

??

?2131

??

?

4

29?

058123111

??????T?????AB=?11?1???1?24?=?0?56??.2900511?ll

4.?計算下列乘積:??4

?(1)??1

5?2?(3)??1

3

3

1

?

?

?

7

??????23???2?;170

??

?(?1,2);?

3??

?(2)(1,2,3)??2?;1

線性代數(shù)(同濟四版)習題參考答案

?

??

1

3

l????;???xl

19

???

2140??0?12(4)

1?134??1?31

40?2

???aal2al3?ll????(5)(xl,x2,x3)?al2a22a23???

?

al3a23

??

12101????0101??0

??(6)??0021??0

???00030???431?????ft?:(l)?l?23???57015X7+7X2+0X1??3??

?(2)(1,2,3)??2?=(1X3+2X2+3Xl)=(10)=10.

?

?

1

?

?

?

4?

?222X(?1)2X2

99999

????(3)??l?(?l,2)=?ix(?l)ix2?=??1

?33X(?1)3X23

??

131?????????6?72140?0?12??=(4)?20?51?134??l?31?40?2????

(5)

aal2al3x?ll??l?

???(xl,x2,x3)??al2a22a23??x2?

a!3a23a33x3

?

x2??;

a33x3

?

031

?

12?1??.0?23??00?3??74X7+3X2+1X1??

?2??=?1X7+(?2)X2+3X1

???

35

????二?6?.???

49

?2??.68?6

??.

??

x?l?

?二(allxH-al2x2+al3x3,al2xl+a22x2+a23x3,al3xl+a23x2+a33x3)??x2?x3

22

=allx21+a22x2+a33x3+2al2xlx2+2al3xlx3+2a23x2x3.

99Q999

125210311210

999999

?0101??012?1??012?4?

?????(6)??0021??00?23?=?00?43?.??????

000?9000?30003

99Q999991210

5.設(shè)A=,B=,問:

1312

(DAB=BA嗎?

(2)(A+B)2=A2+2AB+B2嗎?(3)(A+B)(A?B)=A2?B2嗎?

解:(1)因為

AB=

??

34

46

??,

BA=

??

1238

??,

20第二章矩陣及其運算

所以,

AB二BA.

(2)因為

(A+B)2=

??228??+25??6????

22825??+??=????

8

14??,??二

??,

14291034

??

A2+2AB+B2二

??

31015

1627

411812

(A+B)2=A2+2AB+B2.

(3)因為

(A+B)(A?B)二

??22811???25??13????

020104??=??=????06092817

??,??,

A2?B2=

??

34

(A+B)(A?B)=A2?B2.

當然,一個簡單的說法是,在得到AB=BA之后,直接有

(A+B)2=A2+AB+BA+B2=A2+2AB+B2,(A+B)(A?B)=A2?AB+BA?B2=A2?B2.

6.舉反例說明下列命題是借誤的:(1)若A2=0,則A=0;

(2)若A2=A,則A=(^A=E;

(3)若AX=AY=O,則X=Y.??,且A??

01

,A2=0,但A=0.解:(1)取人=

00

????11

(2)取A=,A2=A,但A=0且人=£.

00W9999999999101111

(3)取A=,X=,Y=.

0071101

AX=AY且A=O但X=Y.

題5和題6看上去很簡單,實則是再次提醒我們注意矩陣運算不滿足交換律,不滿足零律,

不滿足消去律.這是線性代數(shù)初學者最容易犯的幾個錯誤之」為數(shù)不少的人會一直犯這個

錯誤.

我們要注意,雖然矩陣也有所謂的“加法”、“乘法”,但是這和我們熟知的實數(shù)加法、乘

法是完全不同的.運算的對象不同,運算的內(nèi)容不同,當然,運算的規(guī)律也不同.這是兩個不

同的討論范圍里的不同運算,相同的只不過是沿用了以前的稱謂或記號而已我們不要被這

一點“相同”而忘記二者本質(zhì)的不同.

這種不同的討論范圍里的“加法”、“乘法”,還有很多很多,在現(xiàn)代數(shù)學里非常廣泛和一

般.

??

7.設(shè)A=

1X

01??

.求A2,A3,,?,,Ak.

線性代數(shù)(同濟四版)習題參考答案

解:由計算

A2二

??

????

99=01??=??

??,01??.

21

IX??

011

1X????

011

12X??

011

A3=A2A=

??

1

0??

01

2人入3人

猜測:An=

.下用數(shù)學歸納法證明.

n入1

當n=l時,顯然成立.假設(shè)n=k時成立,則n=k+l時

??

Ak+l=AkA=

??

lkX?lAO

?kl??,求AX

?X?A2=??0

1X0

o??x???i???oox

1X0?

0?

?

?

2人入20??

3人??.X3

2

IkX

01

????

IX

01

??二

??

l(k+l)X

01

??.

由數(shù)學歸納法知:Ak二

?

入?

8.設(shè)A=??0

01

??.

解:方法一.首先計算

X

??

?1??=?0

ox

3

2

2

?

2X??,X2

1

?

?

猜測:An=?入n?0

00An

下用數(shù)學歸納法證明:當n=2時,顯然成立.

假設(shè)n二k時成立,則n=k+1時

入nn入n?l

入3人?

A3=A2?A=?X3?0

00

?

n(n?l)n?2

X?n?l?,(n??2).nX?

3X

?

Ak+1

XXkX

???

??0=Ak?A=?XkkX???0

k

000X

?

kk?l

入k+l(k+l)Xk?l(k+l)X?=?Xk+l(k+l)Xk?l?0

?

k(k?l)k?2

Xk?l

kk?l

k(k?l)k?2

Xk?l

??

1X0???.?

??l??x

Xk+1

99Q9

X?

由數(shù)學歸納法得證:Ak=??0

k

kA

k?lk

XkX

入k

上面的猜測其實是不容易得到的.這里另有一個解法.

22第二章矩陣及其運算

方法二.記

?X?A=??0

0X0

0?

?

0?

?1????XE+B.0

01

??

?0??+?00

xoo

則1

An=(入E+B)n

12

=(XE)n+Cn(XE)n?lB+Cn(XE)n?2B2+???+Bn.

注意到

?0?B=??0

100

??1??,0

?00?B2=??00

OO?O?Bk=??O

000

0??0??,0

1

??0??,0

?00?B3=??00

00

??0??.0

(k??3).

所以

An=(XE+B)n

12

=(XE)n+Cn(入E)n?lB+Cn(XE)n?2B2

???

n

OnXn?10X00

???

n?=?O?OnXn?l?+?O?OX

??

?

OXnO

OXnO

入n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論