版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
線性代數(shù).同濟四版—習題參考答案
線性代數(shù)(同濟四版)習題參考答案
黃正華
Emai1:huangzh@whu.edu.cn
武漢大學數(shù)學與統(tǒng)計學院,湖北武漢430072
WuhanUniversity
目錄第一章行列式第二章矩陣及其運算
第三章矩陣的初等變換與線性方程組
第四章向量組的線性相關(guān)性
第五章相似矩陣及二次型117334869
第一章
您發(fā)現(xiàn)有好的解法,請不吝告知.
行列式
課后的習題值得我們仔細研讀.本章建議重點看以下習題:5.(2),(5);7;8.(2).(這幾個題
號建立有超級鏈接.)若
1.利用對角線法則計算下列三階行列式:????????(1)????
999999999999(3)9999
????
????
201??
??
1?4?1????;
??
?183??
????
111??
??
abc????;
??
a2b2c2??
99Q99999⑵999Q
999999999999⑷Q999
????
????
abc??
??
bca????;
??
cab??xyx+y
yx+yx
????x+y??
??x????.
??y??
解:⑴
????
????
01????2
????
??1?4?1??
????
????
???183??
=2X(?4)X3+0X(?1)X(?1)+1X1X8?OX1X3?2X(?1)X8?1X(?4)X(?1)=?24+8+16?4=
?4.(2)
????
????
??abc??
????
??bca??=acb+bac+cba?bbb?aaa?ccc=3abc?a3?b3?c3.
????
????
??cab??
????
111??
??222222
abc????=bc+ca+ab?ac?ba?cb=(a?b)(b?c)(c?a).
??
a2b2c2??
yx+yx
????x+y??
??333x????=x(x+y)y+yx(x+y)+(x+y)yx?y?(x+y)?x
??y??
=3xy(x+y)?y3?3x2y?3y2x?x3?y3?x3=?2(x3+y3).
2.按自然數(shù)從小到大為標準次序,求下列各排列的逆序數(shù):(1)1234;(2)4132;(3)3421;
(5)13???(2n?l)24???(2n);(6)13???(2n?l)(2n)(2n?2)???2.解
(1)逆序數(shù)為0.
(2)逆序數(shù)為4:41,43,42,32.
1
(4)2413;
(3)
99999999999??999
(4)
??????x????y????
??x+y
2
(3)逆序數(shù)為5:32,31,42,41,21.(4)逆序數(shù)為3:21,41,43.(5)逆序數(shù)為
n(n?l)
:第一章行列式
32................................................................................1
個52,54.........................................................................2
個72,74,76......................................................................3
個................................................................................
.....(2n?l)2,(2n?l)4,(2n?l)6,...,(2n?l)(2n?2)...............(n?l)個
(6)逆序數(shù)為n(n?D:
52
54.........................................................................2
72
74,76......................................................................3
(2n?l)2,(2n?l)4,(2n?l)6.....(2n?l)(2n?2)(n?l)個
.....(2n)2,(2n)4,(2n)6,(2n)(2n?2)................................(n?l)個
3.寫出四階行列式中含有因子alla23的項.
解:由定義知,四階行列式的一般項為
(?1)talpla2p2a3p3a4p4,
其中t為plp2p3p4的逆序數(shù).
由于pl=l,p2=3已固定,plp2p3p4只能形如13????,即1324或1342.對應(yīng)的逆序數(shù)t分別
為
0+0+1+0=1,或0+0+0+2=2.
所以,?alla23a32a44和alla23a34a42為所求.
4.計算下列各行列式:????
??4124??
????
????
??1202??
??(1)????10520??;????
????
??0117??
????
????
ae?????abac
????
??;(3)??bd?cdde????
????
??bfcf?ef??
??
9QQ9999Q(2)99QQ
99Q99999999999Q9⑷9Q9Q
999999
2021
4207
????
????
????
????
????rl?r2
99Q9=====?99Q9
????
????
????
140
21102212407
??
1999999
3?121????;1232????
??
5062??2
1
4
a
1
??0??????
?lblO????.O?lcl????
??
OO?ld??
1000
??
202????
??
?72?4?????152?20????
??
117??
解:⑴
??
999999999999999999
410
121
105105
????
????
????
????
????r2?4rl
99QQ=======999Q9p3^1Or1
????
????
????
線性代數(shù)(同濟四版)習題參考答案
????????r2?r4??======????
99Q999
(2)
9999999999999999
0117??r4+7r2????=="=??????r+15r320?152?20????
????????0?72?41
2
2
215210
120120
43643011220200
999999999999999999C^9C2Q9QQ--=99QQ=9999QQ99Q9999Q99999Q9999
??=0.????????
1000215
2100120
01179436
????
??2??????
????
9979999=17X9999985999999
????????450202
999999999999999999r49r29QQ9----9QQQ-Q9999Q999Q9Q9Q
21212010000121
0111434
??
299999979999=0599999Q59QO2OO99999999999999999999
3
9999999Q99999Q99999999999999r4Qr1QQ====9Q99
999999
3?123?123?12
3?12
(3)
????
ae???abac
??
??bd?cdde??????bfcf?ef
????
???Hl??r2+rl
=====adfbce????002r3+rl
??
??020
99Q99999999999Q9Q999a9100
lb?10
9999999999999999
e??l?????bc???ll
99999999
??=adf??b?ce??=adfbce??1?11????????????????????b??1c?e??1?1????????????02?????
???=?adfbce????=4abcdef.????????20????001
999999999999999999999
9Q9999Q999999Q9QQ9r1+ar2===^=
0?10
l+abb?l
ale
001??
999999999999999999
9QQQ999999Q9999?
(4)
01c
?ld????
??l+abaO??按第1列
=======(?1)(?l)2+l??cl???l展開??
??0?ld????ad按第3行3+2??l+ab====(?l)(?1)??
???1展開1+cd
00?ld
????
????
ad??l+aba??
??c3+dc2????===??c1+cd???1??=
????
????0?10??????
??=abcd+ab+cd+ad+l.??
99Q9999999999999
5.??證明:????22??abb????a
????
??=(a?b)3;(l)??2aa+b2b????
????
??111??
??????證明??2??22??abb????aab?a2b2?a2??a
??c2?cl????
??2aa+b2b??=====????2ab?a2b?2a??c??
??3?cl????
??l??10011??
99Q999
??a??ab?a2b2?a2??
????3+l??=(?l)??=(b?a)(b?a)????
??l??b?a2b?2a??
99999999
9QQ9999Q
??xyz????ax+byay+bzaz+bx??
99999999
??=(a3+b3)??yzx??;(2)??ay+bzaz+bxax+by????????
99999999
??zxy????az+bxax+byay+bz??
??
99Q99999999999
??b+a????
??=(a?b)3.2??
4第一章行列式
-99999999
??ax+byay+bzaz+bx????xay+bz
??按第1列????
??ay+bzaz+bxax+by??=====a????=??yaz+bx??
??分裂開????
??az+bxax+byay+bz????zax+by
9QQ9999Q
99Q99999
??yzaz+bx????xay+bzz??
??????再次2????+0+0+b2??zxax+by??==a??yaz+bxx????????裂開????????
??xyay+bz????zax+byy??
999?9999?999999999xy79999yZX99
??????再次3??3????==a??+byzx??zxy????????裂開????????
99zxy9999xyz9999^w99999w999^9^9999xyz9999xyz9999xy999ww999
??+b3(?l)2??yzx??=(a3+b3)??yz=a3??yzx??????????
999999999999/
????
????
az+bx????y
??????ax+by??+b????z????
??xay+bz??
??
??
az+bx??
??
ax+by????
??
ay+bz??
ay+bzaz+bxax+by
????z????x????.??y??
此題有一個“經(jīng)典”的解法:
999Q99
999Q99
??ax+byay+bzaz+bx????ax
999999
??ay+bzaz+bxax+by??二??ay??????
99Q999
??az+bxax+byay+bz????az
9999999999
999999999999xyz9999yzx99999999999999
??+b3??zxy??=a3??=a3??yzx??????????
????????????zxy????xyz????
????
????
??xyz??
????
??.=(a3+b3)??yzx????
??????zxy??
ayazaxxyz
yzx
azaxayzxy
99Q9999?
????bybz????
??+??bzbx????????
99?Qbxby999999999999999999+b31)
??
??
xyz??
??
yzx????
??
zxy??
????bx??
??by??????bz??
這個解法“看上去很美”,實則是一個錯解!我們強調(diào),行列式不能作這種形:.式.上的加法.
??????????????all...aln????bll...bln????all+bll...aln+bln????????????????.????
9Q9999999QQ9999QQ9+=9QQ9999999999Q99999Q99Q9Q9anl?
??ann????bnl???bnn????anl+bnl???ann+bnn??
99Q99999(3)99QQ
999999
a2b2c2d2
(a+l)2(b+l)2(c+l)2
(a+2)2(b+2)2(c+2)2
(a+3)2????
??
(b+3)2????=0;
2??(c+3)????
(d+3)2??
(a+3)
2
證明:
(d+l)2(d+2)2??
??a2(a+l)2(a+2)2????2??b(b+1)2(b+2)2??
??c2(c+l)2(c+2)2????2
??d(d+l)2(d+2)2
??
??a22a+12????2b2b+12c3?2c2??
二二二二二二??c4?3c2????c22c+12
??2
??d2d+12
(b+3)2(c+3)2
(d+3)2??6??????6??兩列成比例??======0.??6????6??
????
????
????
????
99cj?c1Q9Q9===:=99Q999j=2349999
????
????
a
2
2a+12b+12c+12d+l
4a+44b+44c+44d+4
6a+96b+96c+96d+9
b2c2d2
??
99Q99999999999Q9Q9
線性代數(shù)(同濟四版)習題參考答
案??????????(4)??????????laa2a41bb2b41CC2c4??l??????d????=(a?b)(a?c)(a?d)(b?c)
(b?d)(c?d)(a+b+c+d);2??d????4??d5
證明:
????????????????????laa2a41bb2b41cc2c41dd2d4??????????????????cj?cl????======?
???j????=2,3,4??????????laa2a40b?ab2?a2b4?a40c?ac2?a2????0????d?a????22??d?a??
??d4?a4??c4?a4
????????b?ac?ad?a??????展開
rl??222222??===??c?ad?a??b?a????22??2222222??b(b?a)c(c?a)d(d?a)??????????!!
1??????????=(b?a)(c?a)(d?a)??b+ac+ad+a??????2????b(b+a)c2(c+a)d2(d+a)?????????
?100????????c2?cl??====(b?a)(c?a)(d?a)??b+ac?bd?b????c3?cl????22222??b(b+a)c(
c+a)?b(b+a)d(d+a)?b(b+a)??
????11展開
rl??=====(b?a)(c?a)(d?a)(c?b)(d?b)??2??(c+bc+b2)+a(c+b)(d2+bd+b2)+a(d+b)
=(a?b)(a?c)(a?d)(b?c)(b?d)(c?d)(a+b+c+d).????????????????????????(5)??????????
??xO...Oan?lx...0an?10?l...0an?2........................00...xa2??????????0???
?..??=xn+alxn?l+??,+an?lx+an..?????l????x+al??0
證明:方法一.設(shè)法把主對角線上的x變?yōu)?,再按第一列展開.
9999999999999999pn_999999999999?999
??????????????cn?i+xcn??=====????????????????xO...OOanxO...00an?lx...00an?l
?lx...00an?10?l...00an?20?l...00an?2..............................................................................
................................00...x0a300...x0a3????00??????00????.???????10??x?l??
????a2x+al??00...?10x2+alx+a2????0??????0????..??.??????0???l??????x+al??
6第一章行列式
99999999999
9999999999x910???000"W0xl???000QQ
=cn=?=2=+=xc=n=?=1=????…
9999999999QQQ00???091"000???0091^9^99
??anan?lan?2,??x3+alx3+a2x+a3x2+alx+a2x+a??
1??
9Q9999QQJ?.?9999QQ...99
??....????00?,???????00??,??xn+alxn?l+??,+an?lx+anxn?l+alxn?2+???+
an?2x+an?l???
999Q9999Q1???0Q999999
??0???0??
=(xn+alxn?l+???+an?lx+an)(?l)n+l??0??????...????
99
9999Q9
????
??0????10??
??0???0?l????
=(xn+alxn?l+???+an?lx+an)(?l)n+l(?l)n?l
=xn+alxn?l+???+an?lx+an.
方法二.設(shè)法把?1全部變?yōu)?,得到一個下三角矩陣.若x=0,則Dn=an.等式成立.
若x=0,則
9QQ999
????
??XOO???00??
??0x?l???00??????
Dc2+1??
n===c=l=?99999
9999
9Q99
????
??000???X?l??
??a??
nan?l+anan?2???a2x+al??????????x00???00????????0x0???00????==c3=+l??
==c=2=99?9
99
??.........??..??????????000???x?l??????anan?l+anan?2+an?l+an???a2x+a??
1??
99999999x00???
????0x0???00????
=9999
99
9999999999
????000???xO????
??anan?1+anan?2+an?1
+an???P2P??
1??
這里,
P2=a2+a3
x+a4an
x+???++x,00...?10x2+alx+a2??0????0????.??..??????0???????l????x+a??l??
線性代數(shù)(同濟四版)習題參考答案
Pl=x+al+
a2a3an
++???++.xxx
7
得到下三角陣,所以
Dn=xn?l?Pl=xn+alxn?l+?,?+an?lx+an.
方法三.用遞歸法證明.記
??
9999999Q9999I)n=99
9999999999
xO...Oan
?lx
…Oan?l
0?1
...0an?2
00
...xa2
??
???????[??
??
x+al??0
99Q99999999999Q9Q999Q9
則
一??_
展開cl??.Dn===x??
??0????
??an?l
?1...0an?2
…xa2
????
9999910???0999999999999x91???99n+1"為夕+an…??.?1??..????????
??0x+al??0???
00
00
X?1
=xDn?l+an(?l)n+l(?l)n?l=xDn?l+an.
所以,Dn=xDn?l+an.由此遞歸式得
Dn=xn+alxn?l+?,?+an?lx+an.
方法四.按最后一行展開.先看an?i
9QQ9999QQQ999Q99Q999999Qaaa
n
n?l
n?2
的代數(shù)余子式.因為
99
?????????????????????????????????????????]????
x?l??
a2x+
al....
?lx
?lx
?lx
an?(i?l)
an?ian?(i+l)
劃掉an?i所在的行和所在的列,左上角是iXi的方塊,右下角是(n?i?l)X(n?i?l)的方塊,
余下全為0.
則an?i的代數(shù)余子式為(注意到an?i處在第n行、i+1歹!J)::::::::::
????
??????????…??????.X…????丁+「+1"""=xi(91
??..?1??????????..??????.?1??????
??????x?l??
(n?i?l)X(n?i?l)??x??
iXi所以,Dn按最后一行展開,得到
Dn=an+an?lx+an?2x2+???+an?ixi+?,,+a2xn?2+(x+al)xn?l
8第一章行列式
=xn+alxn?l+,??+an?lx+an.
方法五.針對cl作變換.
9999999999999999pn_9999
99999999999999999999999999
cl+xc2??===????
9999999999999999999999Q99?
cl+x2c3??======????
9QQ9999QQQ99
x00...Oan
0x20
???0
00x3
...0
an+an?lx+an?2x2
?lx0...0an?l
0?lx
…0an?2
?lx0...0
0?lx
…0an?2
?lx0...0an?1000...xa2
??
??0??????0????0??
999999
???!????
??
x+al??................
000...xa20?lx...0an?2
an+an?lxan?l
??
??0??????0????0??
9999QQ
???!????
??
x+al??.......................................................
000...xa2
??
??0??????0????0??
999999
???1????
??
x+al??
=?..????0??????0??????0二????.??.一
?lx0...0an?l
0?lx
…0an?2
000
…xa2
??
??0??????0????0??
9?9......9...9.....9...9..
???1????
??
x+al??
這里,P=an+an?lx+an?2x2+???+alxn?l+xn.
再按第一列展開,得
Dn=xn+alxn?l+?,?+an?lx+an.
6.設(shè)n階行列式D二det(aij),把D上下翻轉(zhuǎn)、或逆時針旋轉(zhuǎn)90?、或依副對角線翻轉(zhuǎn),依次
得
999999999Q99
??ann???aln????aln???ann????anl???ann??
999999999999
9999999999999999D3=9999D2="Dl=99999999999999
9999999Q9999
??anl???all????all???anl????all???aln??
證明D1=D2=(?1)證明:??
??anl???ann????....Dl=??..????
??all???aln
n(n?l)
????a????ll????????anl??n?l次行的相鄰互換??n?l??=========(?1)??.??使r換
到第一行??.n????.??????a21
D,D3=D.
alnann...a2n
9999999999999999999Q99
線性代數(shù)(同濟四版)習題參考答案
99Q999all???aln999999999999a21???
n?2次行的相鄰互換??n?ln?2??a=========(?l)(?l)??nl???ann??=???
??.??使rn換到第二行.??.??..????.??????a31???a3n??
??????all???aln??????????n(n?l)..??=(?1)1+2+???+(n?2)+(n?l)D=(?l)D...=(?
l)n?l(?l)n?2???(?1)??.????.??????anl???ann??
9
同理可證
D2=(?l)
r)(n?l)
????all????.??.??.????aln
anl...ann
n(n?l)????????n(n?l)n(n?l)
??=(?1)DT=(?1)D.??????(?1)
n(n?l)
D3=(?l)
n(n?l)
D2=(?l)
D=(?l)n(n?l)D=D.
7.計算下列各行列式(Dk為k階行列式):
????
????al????
????..??,其中對角線上元素都是a,未寫出的元素都是0;(l)Dn=??.??????????la??
解:方法一.將cn作n?l次列的相鄰對換,移到第二列:
9QQQ9999
??a0???01????a0???01??
99Q9999?
9QQ9999Q
??10???Oa????Oa???00??
999Q9999
??????.Dn二外20分???009^"=C?l)999999999999Q99999?
?..??00???a0??
99999999
??00???a0????10???0a??
再將rn作n?l次行的相鄰對換,移到第二行:
??
??alO???0????
??laO???0??
n?ln?l??00a???ODn=(?l)(?1)??
9Q9Q9999
??000???a
方法二.
9Q9Q99Q999999QDn=99
9999999Q99
a0...01
???
??
l??????00??
9Q9Q999Q99a099
??0a??0
9QQ9999QQ9
99999999a???
99QQa199Q9999Q?99QQQ
9QQQ=Q999991a99999Q9Q990???99
????
=(a2?l)an?2.
(n?2)X(n?2)
a???
...00
????a????展開cl
======a????
????
99
9999999Q99999Q999999n+1994-lX⑴1)????????????/??1)X(n^l)
0???00
10
a,
...0
aO
??
999Q99Q9QQ999Q9Q99Q9
(n?l)X(n?l)
10第一章行列式
????a????展開rlnn+1(n?l)+l??=::a+(?l)X1X(?l)??????=an?an?2.
99Q999999999
(2)Dn=??
99999999
xa...
a
???
aa
Q9999999999999?99999999
(n?2)X(n?2)
Y??????
aa,?,x
解:方法一.將第一行乘(?1)分別加到其余各行,得
????xaa????
??a?xx?aO????Ox?aDn=??a?x??...??......????
??a?xOO
??
??????0??
??0????,
??.??..????x?a??a
再將各列都加到第一列上,得
??
??x+(n?l)aaa??????Ox?aO????OOx?aDn=????...??......??????000
方法二.將各列都加到第一列得
??
??x+(n?l)aa???????
??x+(n?l)ax?????Dn=??.
??
??x+(n?l)aa???再將第一行乘以(?1)分別加到其余各行,得
9999999Q99
????????Dn=x+(n?l)a??
999Q999999
10...0
a0
...0
aO
??
??????O??
??????O????=x+(n?l)a(x?a)n?1.
??.??..????x?a??a
aa...x
????
????
????
????
9999999Q9999
??=x+(n?l)a??
????
????
????
????
la,??aa
...x
lx???
..........1
a
??
9QQ9999QQQ999Q99Q999
Ox?a
x?a???...0
???
??
a????
??0??
??????0????=x+(n?l)a(x?a)n?1.
??.??..????x?a??
方法三.升階法.
??
??la????
??0x????
Dn-??Oa
9999Q999
??0a
aa
aaa...x
x???
..a
??
99Q999999999999999999999
(n+1)X(n+1)
999Q99Q9QQ99
ri?rl??======??i=2,3,?????
99999999
1?1...?1
aO
...0
aO
?lx?a
x?a???
...0
???
??
a????
??0??
??0????
??.??..????x?a??
(n+1)X(n+1)
線性代數(shù)(同濟四版)習題參考答案
若x=a,則Dn=O.若x=a,則將
1
cj
11
加到cl,j=2,3,???,n+1:
????
????l+anaa???a????????
??Ox?aO???0??
????
??00x?a???0??Dn=????
9999Q9999999
????
??000???x?a??
(n+1)X(n+1)
????
????nan
=l+(x?a)=x+(n?l)a(x?a)n?l.
x?a
??
??an??
二??.??.
(a?l)n(a?l)n?l
...a?ll
(a?n)n(a?n)n?l
...a?nl
??
999Q9999QQ99
??;(提示:利用范德蒙德行列式的結(jié)果.)??????????
(3)Dn+l
解:從第n+1行開始,第n+1行經(jīng)過n次相鄰對換,換到第1行;第n行經(jīng)(n?l)次對換換到
第2
+1)
行.經(jīng)n+(n?l)+???+l=n(n次行交換,得(或者直接由題6的結(jié)論)
??
??an
la?l...(a?l)n?l(a?l)n
la?n
...(a?n)n?l(a?n)n
??
??????????????,??????????
Dn+l=(?l)
n(n+l)
此行列式為范德蒙德行列式.
對照范德蒙德行列式的寫法知,這里的a=xl,a?l=x2,...,a?(n?l)=xn,a?n=xn+l.則
xi=a?(i?l),xj=a?(j?l).所以
Dn+l=(?l)
=(?1)=(?1)=(?1)=
二??
n(n+l)
??
n+l??i>j??l
??
xi?xj
??
n(n+l)
????
????(a?i+l)?(a?j+l)??
??
?(i?j)
X
??
n+l??i>j??l
n+l??i>j??l
n(n+l)
n+l??i>j??l
n(n+l)
X(?1)(i?j).??bn????
????????????()??:
n+(n?l)+???+1
(i?j)
??
n+l??i>j??l
alcl
Obldl
(4)D2n
解:方法一.將c2n作2n?l次列的相鄰對換,移到第二列;再將r2n作2n?l次行的相鄰對換,
移到
12第一章行列式
第二行:
9Q9Qa9Qn9Q9?cn9QQ99QQ9999Q
=(?l)2n?l(?l)2n?l????
9QQQQ9Q999999Q9999
bndn
an?l
???alcl
cn?l
bldl
...dn?l
??,bn?l
9999999999999999999999
??=(andn?bncn)D2(n?l),????????????????????
D2n
????a??l
又n=l時D2=??
??cl??bl????
??=aldl?blcl,所以dl??
D2n=(andn?bncn)???(aldl?blcl)=
n??i=l
(aidi?bici).
這個方法與教材P.15的例11相同.本題的第⑴小題也用到了此方法.方法二.
??
99anQ19Q99999Q9999990
展開rl??======an??
999Q999999
??cn?l????O
展開c2n?l
alcl
0???bldl
bn?10...
D2n
dn?10
Odn
????
????
????
????
????
????
????
????
????
????2n+l
bn????+(?l)
????
????
????
????
????
????
????
????
Oan?l
alcl
..bldl
bn?l
00
Ocn
cn?10
dn?10
??
999999999999999999999999999999999999
=======:==andnD2n?2?bncnD2n?2.
由此得遞推公式:
D2n=(andn?bncn)D2n?2,
即D2n=(aidi?bici)D2.
????i=2
n??ab????l????l
(aidi?bici).而D2=????=aldl?blcl,得D2n=
??cldl??
i=l
(5)Dn=det(aij),其中aij二|i?j|;解:由aij=|i?j|得
????0123??????1012????
101??2
??Dn=det(aij)=??.......??....??
??n?2n?3n?4n?5????
??n?ln?2n?3n?4
??n?l????
??n?2????
??n?3??
??.??.??.
??0??
n??
線性代數(shù)(同濟四版)習題參考答案
??
???1111???????
???1?111???????
?1?11???ri?ri+l???l
===="1-l2???9999
??
???1?1?1?1???????
??n?ln?2n?3n?4?????
???1000????
???l?200????
?2?20???lcj+cl
====??....j=2,3,?????....??,
??
???1?2?2?2????
??n?12n?32n?42n?5
??
??l+a??l????l??
(6)Dn=??..??.??
????1
解:升階法.
=(?l)n?l(n?l)2n?2.
999Q???1999Q99??.p9
0.??,其中ala2???an=..??.??
??
???l+an??100.,.01?l...?l
11+al
1
...110...0
10a2
...0
lll+a2
...1...........................................
.............................................100
...an
??????????????????????????????01111+an
??
999999999999999999999999
(n+1)X(n+1)
13
111...10
??????????????????????????????????()????
??0????
??0??
??一??一??一
??n?l??
Il+a2
…1??
99Q999999999Dn=99
999999999999999QQ9999Q
ri?rl??======??i=2,3,?????
99Q9999?
?lal
??
??1+111?????l????OalO???1
cl+c2????l
0a2???=======???1
99999999
???100?????
??1+1+1+???+l??12n????01
cl+cj+l??j??0========??j=2,3,?????.??..??
????0
(n+1)X(n+1)
(n+1)X(n+1)
10a2
...0
??
(n+1)X(n+1)
n????l??
=(ala2???an)1+.
aii=l
14第一章行列式
8.用克萊姆法則解下列方程
組:??xl+x2+x3+x4=5,????x+2x?x+4x=?2,1234(1)?2x1?3x2?x3?5x4=?2,????3xl+x2+2x3+l
1x4=0;
解:
999999999999999999HQ999H9999H999?HP^lllllll999999999999999999999999999999
????12?14????01?23????01?23????01?2??3??=????=????=????=????2?3?l?5????0?5?3?7
99990091389999009l954"=914299999999999QQ999999Q999999QQ999Q9Q3H42992119Q9Q0
92?]1111191910W^W?99999Q9999Q9Q9
?????5?1?10????5?1?10?????22?14????0????????5?5?18????=????=??0?5?18??=???40??
二?142?=9910999293?1959Q9??2935999999999928999999999999999999999999999252899992
30?22????01211????0100??
9999Q9999Q99999Q999Q999999999915H99H999????]??????????????????
9Q9Q991929149Q9Q097923WW09132"990913299:Z9284-99999999999999=99:Z99:::99=999999
9999992929P59Q990912^3^7^^00231P^9OO919199999^9999WW"99^9^9^9W999999^
30000?284??0039310?15?18211??????????????1115??51??????ll????????????12?l?2???
?12?24??????D4=??=????2?3?1?2??=142.??2?3?2?5??=?426;??????????????????31??312
O??O11??DD1D2D3
所以,
xl二
??5xl+6x2???????xl+5x2+6x3
(2)????????D1=1,Dx2==l,=0,=0,D2=2,Dx3=D3=3,Dx4=D4=?l.Dx2+5x3+6x4x3+5x4+6x5=0,
x4+5x5=l.
555966夕569990=56夕夕9515??????1??????5??二5r)4X????0??????????60
999Q9999999915展開
c??l=====5D4X4?????=??01????????????00????????0????6????=5D4X4?6D3X3.??5???
???????????????????解:系數(shù)行列式06510065D5X565651
由遞歸式D5義5=5D4X4?6D3X3知,
D3X3=5D2X2?6D1X1=5(25?6)?6X5=65,
D4X4=5D3X3?6D2X2=5X65?6X19=211,
線性代數(shù)(同濟四版)習題參考答案D5X5=5D4X4?6D3X3=5X211?6X65=665.
又
99Q999
????16000????
??6000??????????05600????
????
????
D5600????1=????01560????
????
??1560????????00156??=展開=D??
4X4+??
????
????
????
????100150156??
????
=D??4X4+64=211+
????64=1507.
????51000??????
????600????????10600????????l????000??????D560????5
????
2=??????00560????
??二展開==c=2=????0??+(???1600????
????????????00156????156560??
??????0??1)5+2????
????0??
??010??????????15??00150156????=展開=c2
??===?D3X3?5X63=?65?1080=?1145
999Q
????56100????
????????0????????15000????????150????0D??0160????56
????
3=??????01060????=展開==c=3=(?1)1+3??????150
????06??????+(?1)5+3????6??00056??????????05
??00115??????0015????01
??????005
二二展開二c
??==2=D2X2?6X6XD2X2=703.
????
????56010??????
9Q9999i5609999999915600999999999999560D01509999994=99999999^Ff:c4"
??01500??======(?1)1+4????6??????001+(?1)5+4????15
6??
9999999999015W00106999999
??00015??????0005????????001二二展開二c
??==4=?5?6D3X3=?5?6X
????65二?395.
????56001????
9Q156(P-9m15609WW99^^9995600999^"D569999
????0????
5=??0????
夕—?展開
??01560??==c=5=(?1)1+5????01????156??????=??15??6????00150??????00??+??????01
5??????00011????
????0001????????0015????
=1+D4X4=1+211=212.
所以,
x2121=1507
665,x2=?1145
665,x3=703
665,x4=?395
665,x5=665.
????Xxl+x2+x3=0,
9.問人,u取何值時,齊次線性方程組??xl+ux2+x3=0,有非零解?
9xl+2Ux2+x3=0
16第一章行列式
解:系數(shù)矩陣
999999Q9999999入H99Q9入9999r39r19999=0=99==99991g199=9919999999912.19999Q9
?????11??????3+2??入1????U1??二U(?1)??11??U0??????????=U(1?入).??
要使齊次線性方程組有非零解,則D=o,即
u(1?入)=0,
得u=0或X=1.???2x2+4x3=0,??(1?x)X1
10.問x取何值時,齊次線性方程組2x1+(3?X)x2+x3=o,有非零解????x+x+(l?X)x=0.123
解:系數(shù)矩陣
?????24??1?X??D=??3?X1??2????111?X????3+1???3+入=1X(?1)????!?X???????????
?4??????1今A93+X??c29C19??9?9=?9===??219X1??99=9??999??9?991019X???999?99?4
??3+3??1?x?3+X??+(1?X)(?1)????21?X1????????????=(X?3)?4(1?X)+(1?X)3?2(1
?X)(?3+X)=(l?X)3+2(l?X)2+X?3
=A(X?2)(3?X).
齊次線性方程組有非零解,則D=0,即
X(X?2)(3?X)=0.
得X=0,入=2或X=3.
第二章1.已知線性變換:矩陣及其運算????xl=2yl+2y2+y3,
x2=3yl+y2+5y3,???x=3y+2y+3y,3123
求從變量xl,x2,x3到變量yl,y2,y3的線性變換.解:方法一.用消元法解方程,得出
yl,y2,y3.略.方法二.解矩陣方程.由已知:
??????x221y?1????I??x2?=?315??y2?,??????
323y2x3
故???
2
1
21??l??????y2?l???y2?=?3???y23?5??3yx?7?49??l??l?????x2?=?63?7????y2?.??y332?4
x3
即????yl=?7xl?4x2+9x3,
y2=6xl+3x2?7x3,???y=3x+2x?4x.3123
方法三.用克拉默法則解方程.系數(shù)矩陣
??????221??D=????315????323
所
以11?llPxZy1
01????0??????c1?2c3?????7?95??=l.??=====????c2?2c3???????????3?43????212?????
???21???????x2??????23????????21??????+x3??????15????????=?7xl?4x2+9x3;??同理
得y2=6xl+3x2?7x3,y3=3xl+2x2?4x3.2.已知兩個線性變換
????xl=2yl+y3,
x2=?2yl+3y2+2y3,???x=4y+y+5y,3123????yl=?3zl+z2,y2=2zl+z3,???y=?z+3z,323
求從zl,z2,z3到xl,x2,x3的線性變換.解:方法一.直接代入.比如:
xl=2yl+y3
=2(?3zl+z2)+(?z2+3z3)=?6zl+z2+3z3.
17
18第二章矩陣及其運算
方法簡單,但我們應(yīng)盡可能使用本章學習的矩陣知識.
方法二.由已知
???x2?l???x2?=??2???x34
???y?3?l???y2?=?2???y20所以,
?
?
?
??
?
?
??0
1
?
y
??l???32???y2?,
15y2
???10z
??l???01???z2?.
?13z3
??
??
?
x201y201?310z
?l????l??????l??x2?=??232??y2?=??232??2??01???z2??????????x3415y24150?13z3
????
z?613
??1??
???=??12?49??z2?.
?10?116z3
即
?
???xl=?6zl+z2+3z3,x2=12zl?4z2+9z3,???x=?10z?z+16z.
3123
?
?
?
?
123111
????
???3.設(shè)A=?ll?l?,B=??l?24??,
0511?ll
求3AB?2A及ATB.
解:
?
??
3?
?
????
??20??.?222
12111
???
??3AB?2A=3??11?1???1?2
051?ll
???
11058
???
??=3??0?56??2?ll
l?1290
9
??
Ill
??
?4???2?11?11?111
??
?2131
??
?
4
29?
058123111
??????T?????AB=?11?1???1?24?=?0?56??.2900511?ll
4.?計算下列乘積:??4
?(1)??1
5?2?(3)??1
3
3
1
?
?
?
7
??????23???2?;170
??
?(?1,2);?
3??
?(2)(1,2,3)??2?;1
線性代數(shù)(同濟四版)習題參考答案
?
??
1
3
l????;???xl
19
???
2140??0?12(4)
1?134??1?31
40?2
???aal2al3?ll????(5)(xl,x2,x3)?al2a22a23???
?
al3a23
??
12101????0101??0
??(6)??0021??0
???00030???431?????ft?:(l)?l?23???57015X7+7X2+0X1??3??
?(2)(1,2,3)??2?=(1X3+2X2+3Xl)=(10)=10.
?
?
1
?
?
?
4?
?222X(?1)2X2
99999
????(3)??l?(?l,2)=?ix(?l)ix2?=??1
?33X(?1)3X23
??
131?????????6?72140?0?12??=(4)?20?51?134??l?31?40?2????
(5)
aal2al3x?ll??l?
???(xl,x2,x3)??al2a22a23??x2?
a!3a23a33x3
?
x2??;
a33x3
?
031
?
12?1??.0?23??00?3??74X7+3X2+1X1??
?2??=?1X7+(?2)X2+3X1
???
35
????二?6?.???
49
?2??.68?6
??.
??
x?l?
?二(allxH-al2x2+al3x3,al2xl+a22x2+a23x3,al3xl+a23x2+a33x3)??x2?x3
22
=allx21+a22x2+a33x3+2al2xlx2+2al3xlx3+2a23x2x3.
99Q999
125210311210
999999
?0101??012?1??012?4?
?????(6)??0021??00?23?=?00?43?.??????
000?9000?30003
99Q999991210
5.設(shè)A=,B=,問:
1312
(DAB=BA嗎?
(2)(A+B)2=A2+2AB+B2嗎?(3)(A+B)(A?B)=A2?B2嗎?
解:(1)因為
AB=
??
34
46
??,
BA=
??
1238
??,
20第二章矩陣及其運算
所以,
AB二BA.
(2)因為
(A+B)2=
??228??+25??6????
22825??+??=????
8
14??,??二
??,
14291034
??
但
A2+2AB+B2二
??
31015
1627
411812
故
(A+B)2=A2+2AB+B2.
(3)因為
(A+B)(A?B)二
??22811???25??13????
020104??=??=????06092817
??,??,
而
A2?B2=
??
34
故
(A+B)(A?B)=A2?B2.
當然,一個簡單的說法是,在得到AB=BA之后,直接有
(A+B)2=A2+AB+BA+B2=A2+2AB+B2,(A+B)(A?B)=A2?AB+BA?B2=A2?B2.
6.舉反例說明下列命題是借誤的:(1)若A2=0,則A=0;
(2)若A2=A,則A=(^A=E;
(3)若AX=AY=O,則X=Y.??,且A??
01
,A2=0,但A=0.解:(1)取人=
00
????11
(2)取A=,A2=A,但A=0且人=£.
00W9999999999101111
(3)取A=,X=,Y=.
0071101
AX=AY且A=O但X=Y.
題5和題6看上去很簡單,實則是再次提醒我們注意矩陣運算不滿足交換律,不滿足零律,
不滿足消去律.這是線性代數(shù)初學者最容易犯的幾個錯誤之」為數(shù)不少的人會一直犯這個
錯誤.
我們要注意,雖然矩陣也有所謂的“加法”、“乘法”,但是這和我們熟知的實數(shù)加法、乘
法是完全不同的.運算的對象不同,運算的內(nèi)容不同,當然,運算的規(guī)律也不同.這是兩個不
同的討論范圍里的不同運算,相同的只不過是沿用了以前的稱謂或記號而已我們不要被這
一點“相同”而忘記二者本質(zhì)的不同.
這種不同的討論范圍里的“加法”、“乘法”,還有很多很多,在現(xiàn)代數(shù)學里非常廣泛和一
般.
??
7.設(shè)A=
1X
01??
.求A2,A3,,?,,Ak.
線性代數(shù)(同濟四版)習題參考答案
解:由計算
A2二
??
????
99=01??=??
??,01??.
21
IX??
011
1X????
011
12X??
011
A3=A2A=
??
1
0??
01
2人入3人
猜測:An=
.下用數(shù)學歸納法證明.
n入1
當n=l時,顯然成立.假設(shè)n=k時成立,則n=k+l時
??
Ak+l=AkA=
??
lkX?lAO
?kl??,求AX
?X?A2=??0
1X0
o??x???i???oox
1X0?
0?
?
?
2人入20??
3人??.X3
2
IkX
01
????
IX
01
??二
??
l(k+l)X
01
??.
由數(shù)學歸納法知:Ak二
?
入?
8.設(shè)A=??0
01
??.
解:方法一.首先計算
X
??
?1??=?0
ox
3
2
2
?
2X??,X2
1
?
?
猜測:An=?入n?0
00An
下用數(shù)學歸納法證明:當n=2時,顯然成立.
假設(shè)n二k時成立,則n=k+1時
入nn入n?l
入3人?
A3=A2?A=?X3?0
00
?
n(n?l)n?2
X?n?l?,(n??2).nX?
3X
?
Ak+1
XXkX
???
??0=Ak?A=?XkkX???0
k
000X
?
kk?l
入k+l(k+l)Xk?l(k+l)X?=?Xk+l(k+l)Xk?l?0
?
k(k?l)k?2
Xk?l
kk?l
k(k?l)k?2
Xk?l
??
1X0???.?
??l??x
Xk+1
99Q9
X?
由數(shù)學歸納法得證:Ak=??0
k
kA
k?lk
XkX
入k
上面的猜測其實是不容易得到的.這里另有一個解法.
22第二章矩陣及其運算
方法二.記
?X?A=??0
0X0
0?
?
0?
?1????XE+B.0
01
??
?0??+?00
xoo
則1
An=(入E+B)n
12
=(XE)n+Cn(XE)n?lB+Cn(XE)n?2B2+???+Bn.
注意到
?0?B=??0
100
??1??,0
?00?B2=??00
OO?O?Bk=??O
000
0??0??,0
1
??0??,0
?00?B3=??00
00
??0??.0
則
(k??3).
所以
An=(XE+B)n
12
=(XE)n+Cn(入E)n?lB+Cn(XE)n?2B2
???
n
OnXn?10X00
???
n?=?O?OnXn?l?+?O?OX
??
?
OXnO
OXnO
入n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度坡屋面小青瓦施工質(zhì)量監(jiān)督與整改服務(wù)合同
- 二零二五年度新加坡留學就業(yè)輔導合同4篇
- 2025專業(yè)級防雷系統(tǒng)設(shè)計與施工監(jiān)管合同3篇
- 商場自動扶梯安裝與維護服務(wù)合同(2025年度)
- 二零二五版羅絲與楊洋的離婚協(xié)議及財產(chǎn)分割及子女撫養(yǎng)協(xié)議4篇
- 2025年度家具退貨及維修保養(yǎng)服務(wù)協(xié)議范本
- 2025版GB∕T30057(環(huán)保)固體廢物處理與資源化利用合同3篇
- 二零二五年度歷史文化遺址草坪保護與旅游合同3篇
- 二零二五年度醫(yī)療信息化系統(tǒng)建設(shè)與維護合同2篇
- 2025版新型綠色建筑勞務(wù)分包合同范本3篇
- 副總經(jīng)理招聘面試題與參考回答(某大型國企)2024年
- PDCA循環(huán)提高護士培訓率
- 2024-2030年中國智慧水務(wù)行業(yè)應(yīng)用需求分析發(fā)展規(guī)劃研究報告
- 《獅子王》電影賞析
- 河北省保定市定州市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析
- 中醫(yī)護理人文
- 2024-2030年中國路亞用品市場銷售模式與競爭前景分析報告
- 貨物運輸安全培訓課件
- 前端年終述職報告
- 2024小說推文行業(yè)白皮書
- 市人民醫(yī)院關(guān)于開展“改善就醫(yī)感受提升患者體驗主題活動”2023-2025年實施方案及資料匯編
評論
0/150
提交評論