




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
☆注:請用MicrosoftWord2016以上版本打開文件進行編輯,用WPS等其他軟件可能會出現(xiàn)亂碼等現(xiàn)象.高中數(shù)學二輪復習講義——選填題部分第4講導數(shù)的簡單應用從近三年高考情況來看,導數(shù)的概念及計算一直是高考中的熱點,對本知識的考查主要是導數(shù)的概念及其運算法則、導數(shù)的幾何意義等內(nèi)容,常以選擇題或填空題的形式呈現(xiàn),有時也會作為解答題中的一問.解題時要掌握函數(shù)在某一點處的導數(shù)定義、幾何意義以及基本初等函數(shù)的求導法則,會求簡單的復合函數(shù)的導數(shù).導數(shù)的應用也一直是高考的熱點,尤其是導數(shù)與函數(shù)的單調(diào)性、極值、最值問題是高考考查的重點內(nèi)容,一般以基本初等函數(shù)為載體,考查導數(shù)的相關(guān)知識及應用,題型有選擇題、填空題,也有解答題中的一問,難度一般較大,常以把關(guān)題的位置出現(xiàn).解題時要熟練運用導數(shù)與函數(shù)單調(diào)性、極值與最值之間的關(guān)系,理解導數(shù)工具性的作用,注重數(shù)學思想和方法的應用.題型一、導數(shù)的幾何意義——切線考點1.在點問題與過點問題1.(2018?新課標Ⅰ)設(shè)函數(shù)f(x)=x3+(a﹣1)x2+ax.若f(x)為奇函數(shù),則曲線y=f(x)在點(0,0)處的切線方程為()A.y=﹣2x B.y=﹣x C.y=2x D.y=x2.已知曲線C:f(x)=x3﹣ax+a,若過曲線C外一點A(1,0)引曲線C的兩條切線,它們的傾斜角互補,則a的值為()A.278 B.﹣2 C.2 D.考點2.公切線問題1.(2016?新課標Ⅱ)若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+1)的切線,則b=.2.已知函數(shù),,若直線與函數(shù),的圖象都相切,則的最小值為(
)A.2 B. C. D.3.設(shè)函數(shù)f(x)=32x2?2ax(a>0)與g(x)=a2lnx+b有公共點,且在公共點處的切線方程相同,則實數(shù)考點3.切線綜合問題1.設(shè)點P在曲線y=12ex上,點Q在曲線y=ln(2x)上,則|PQA.1﹣ln2 B.2(1﹣ln2) C.1+ln2 D.2(1+ln2)2.設(shè)曲線y=(ax﹣1)ex在點A(x0,y0)處的切線為l1,曲線y=(1﹣x)e﹣x在點B(x0,y1)處的切線為l2,若存在x0∈[0,32],使得l1⊥l2,則實數(shù)aA.(﹣∞,1] B.(12,+∞) C.(1,32) D.[1,3.若曲線有兩條過坐標原點的切線,則a的取值范圍是.4.已知函數(shù),函數(shù)的圖象在點和點的兩條切線互相垂直,且分別交y軸于M,N兩點,則取值范圍是.題型二、導數(shù)與函數(shù)的單調(diào)性考點1.已知單調(diào)性求參1.已知函數(shù)f(x)=12mx2﹣2x+lnx在定義域內(nèi)是增函數(shù),則實數(shù)mA.[﹣1,1] B.[﹣1,+∞) C.[1,+∞) D.(﹣∞,1]2.若函數(shù)f(x)=kx﹣lnx在區(qū)間(1,+∞)上為單調(diào)函數(shù),則k的取值范圍是.3.(2016?新課標Ⅰ)若函數(shù)f(x)=x?13sin2x+asinx在(﹣∞,+∞)單調(diào)遞增,則A.[﹣1,1] B.[﹣1,13] C.[?13,13]4.已知函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[﹣1,2]上是減函數(shù),那么b+c有最大值.考點2.已知存在單調(diào)區(qū)間求參1.若函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍為.2.已知函數(shù)f(x)=lnx+(x﹣b)2(b∈R)在區(qū)間[12,2]A.(?∞,32) B.(?∞,94)考點3.利用構(gòu)造函數(shù)解不等式1.已知f(x)的定義域為(0,+∞),f′(x)為f(x)的導函數(shù),且f(x)>﹣xf′(x),則不等式f(x+1)>(x﹣1)f(x2﹣1)的解集是()A.(1,2) B.(1,+∞) C.(0,2) D.(2,+∞)2.定義在R上的函數(shù)f(x)滿足:f(﹣x)+f(x)=x2,當x<0時,f′(x)<x,則不等式f(x)+12≤f(1﹣x)+x3.已知函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),若f(x)滿足f'(x)?f(x)x?1>0,f(2﹣x)=f(x)?e2﹣2A.f(1)<f(0) B.f(3)>e3?f(0) C.f(2)>e?f(0) D.f(4)<e4?f(0)4.設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2018)2f(x+2018)﹣4f(﹣2)>0的解集為()A.(﹣2020,0) B.(﹣∞,﹣2020) C.(﹣2016,0) D.(﹣∞,﹣2016)考點4.構(gòu)造函數(shù)比較大小1.設(shè)a=14e25,bA.a(chǎn)<c<b B.a(chǎn)<b<c C.b<c<a D.c<a<b2.,則()A. B. C. D.3.設(shè),則(
)A. B. C. D.4.已知,則(
)A. B. C. D.題型三、導數(shù)與函數(shù)的極值、最值問題考點1.探求極值與最值1.(2017?新課標Ⅱ)若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點,則f(x)的極小值為()A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.12.(2018?新課標Ⅰ)已知函數(shù)f(x)=2sinx+sin2x,則f(x)的最小值是.3.(2013?新課標Ⅱ)已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是()A.?x0∈R,f(x0)=0 B.函數(shù)y=f(x)的圖象是中心對稱圖形 C.若x0是f(x)的極小值點,則f(x)在區(qū)間(﹣∞,x0)上單調(diào)遞減 D.若x0是f(x)的極值點,則f′(x0)=04.已知函數(shù)f(x)=x3﹣px2﹣qx的圖象與x軸切于點(1,0),則f(x)的極值為()A.極大值為427,極小值為0B.極大值為0,極小值為427C.極小值為?427D.極大值為?4考點2.已知極值(點)、最值求參1.若函數(shù)f(x)=x33?a2x2+xA.(2,52) B.[2,52) C.(2,103) 2.已知函數(shù)f(x)=exx2+2klnx?kx,若x=2是函數(shù)fA.(?∞,e24) 3.已知函數(shù)f(x)=x(lnx﹣2ax)有兩個極值點,則實數(shù)a的取值范圍是()A.(﹣∞,14) B.(0,12) C.(0,14) D.(14.當時,函數(shù)取得最大值,則(
)A. B. C. D.15.已知函數(shù)f(x)=lnx?ax,a為常數(shù).若f(x)在[1,e]上的最小值為326.已知函數(shù)f(x)=(x2+1)lnx﹣m(x2﹣1),則下列結(jié)論正確的是()A.當m=0時,曲線y=f(x)在點(1,f(1))處的切線方程為y=2x B.當m≤1時,f(x)在定義域內(nèi)為增函數(shù) C.當m>1時,f(x)既存在極大值又存在極小值 D.當m>1時,f(x)恰有3個零點x1,x2,x3,且x1x2x3=1考點3.極值中的隱零點問題1.函數(shù)有極小值,且極小值為0,則的最小值為(
)A. B. C. D.2.(2013?湖北)已知a為常數(shù),函數(shù)f(x)=x(lnx﹣ax)有兩個極值點x1,x2(x1<x2)A.f(x1)>0,f(xC.f(x1)>0,f(3.設(shè)函數(shù)f(x)=3cosπxm,若存在f(x)的極值點x0滿足A.(﹣∞,﹣2)∪(2,+∞) B.(?C.(?∞,?24.已知函數(shù)f(x)=x?1x+alnx,且f(x)有兩個極值點x1,x2,其中x1∈(1,2],則f(x1)﹣fA.3﹣5ln
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 帶狀皰疹的護理診斷及護理措施
- 傳染病護理學教學課件
- 工作總結(jié)與成長啟示
- 美妝店裝修知識培訓課件
- 網(wǎng)絡保險知識培訓課件
- 維修安全知識培訓課件
- 木工考試題及答案4級
- 有關(guān)淘寶協(xié)議書
- 養(yǎng)殖場轉(zhuǎn)讓協(xié)議合同書
- 土地承包管理的合同范例
- 歌曲《wake》中英文歌詞對照
- 2024年職教高考《機械制圖》考試題庫
- 2024年-2025年公路養(yǎng)護工理論知識考試題及答案
- 2024年財經(jīng)考試-內(nèi)部審計考試近5年真題集錦(頻考類試題)帶答案
- 《人工智能技術(shù)基礎(chǔ)》課件 第1章 人工智能簡介
- 兒科題庫單選題100道及答案解析
- 物業(yè)費欠繳調(diào)解協(xié)議書范文
- DB34T 3663-2020 植保無人飛機農(nóng)田施藥作業(yè)技術(shù)規(guī)范
- 公司安全生產(chǎn)教育培訓制度范本
- 概覽中外民間美術(shù) 課件 2024-2025學年贛美版(2024)初中美術(shù)七年級上冊
- 停車場管理移交協(xié)議書模板
評論
0/150
提交評論