2024屆安徽省滁州市全椒縣中考四模數(shù)學試題含解析_第1頁
2024屆安徽省滁州市全椒縣中考四模數(shù)學試題含解析_第2頁
2024屆安徽省滁州市全椒縣中考四模數(shù)學試題含解析_第3頁
2024屆安徽省滁州市全椒縣中考四模數(shù)學試題含解析_第4頁
2024屆安徽省滁州市全椒縣中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆安徽省滁州市全椒縣中考四模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.在直角坐標平面內(nèi),已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.2.在平面直角坐標系中,二次函數(shù)y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.3.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為()A.54° B.64° C.74° D.26°4.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.5.共享單車已經(jīng)成為城市公共交通的重要組成部分,某共享單車公司經(jīng)過調(diào)查獲得關(guān)于共享單車租用行駛時間的數(shù)據(jù),并由此制定了新的收費標準:每次租用單車行駛a小時及以內(nèi),免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差6.若二次函數(shù)的圖象經(jīng)過點(﹣1,0),則方程的解為()A., B., C., D.,7.一個多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個多邊形的邊數(shù)是()A.7 B.8 C.9 D.108.如圖,一次函數(shù)和反比例函數(shù)的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或9.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數(shù).小昱在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加2;阿帆在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加1.若小昱在某頁寫的數(shù)為101,則阿帆在該頁寫的數(shù)為何?()A.350 B.351 C.356 D.35810.如圖所示的幾何體的俯視圖是(

)A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,⊙P的圓心在x軸上,且經(jīng)過點A(m,﹣3)和點B(﹣1,n),點C是第一象限圓上的任意一點,且∠ACB=45°,則⊙P的圓心的坐標是_____.12.如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標為__.13.已知實數(shù)x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.14.寫出一個平面直角坐標系中第三象限內(nèi)點的坐標:(__________)15.若二次根式有意義,則x的取值范圍為__________.16.已知同一個反比例函數(shù)圖象上的兩點、,若,且,則這個反比例函數(shù)的解析式為______.三、解答題(共8題,共72分)17.(8分)如圖所示,點P位于等邊△ABC的內(nèi)部,且∠ACP=∠CBP.(1)∠BPC的度數(shù)為________°;(2)延長BP至點D,使得PD=PC,連接AD,CD.①依題意,補全圖形;②證明:AD+CD=BD;(3)在(2)的條件下,若BD的長為2,求四邊形ABCD的面積.18.(8分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點P從點A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點P作PQ⊥AB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).(1)當點R與點B重合時,求t的值;(2)當點P在BC邊上運動時,求線段PQ的長(用含有t的代數(shù)式表示);(3)當點R落在?ABCD的外部時,求S與t的函數(shù)關(guān)系式;(4)直接寫出點P運動過程中,△PCD是等腰三角形時所有的t值.19.(8分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點G、F.(1)求證:△GBE∽△GEF.(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點Q,交EF于點P.當△AGQ與△CEP相似,求線段AG的長.20.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;設(shè)射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.21.(8分)如圖,經(jīng)過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關(guān)于直線x=2對稱,求拋物線的函數(shù)表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.22.(10分)如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數(shù)y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).23.(12分)已知關(guān)于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實數(shù)m,判斷方程①的根的情況,并說明理由.24.2018年“清明節(jié)”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進價比第一批的進價多元.(1)第一批花每束的進價是多少元.(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先求出點M到x軸、y軸的距離,再根據(jù)直線和圓的位置關(guān)系得出即可.【詳解】解:∵點M的坐標是(4,3),

∴點M到x軸的距離是3,到y(tǒng)軸的距離是4,

∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,

∴r的取值范圍是3<r<4,

故選:D.【點睛】本題考查點的坐標和直線與圓的位置關(guān)系,能熟記直線與圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵.2、B【解析】

根據(jù)題目給出的二次函數(shù)的表達式,可知二次函數(shù)的開口向下,即可得出答案.【詳解】二次函數(shù)y=a(x﹣h)2+k(a<0)二次函數(shù)開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數(shù)性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)性質(zhì).3、B【解析】

根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).【詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【點睛】本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對邊平行以及對角線相互垂直的性質(zhì).4、B【解析】

A.括號前是負號去括號都變號;B負次方就是該數(shù)次方后的倒數(shù),再根據(jù)前面兩個負號為正;C.兩個負號為正;D.三次根號和二次根號的算法.【詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【點睛】本題考查去括號法則的應用,分式的性質(zhì),二次根式的算法,熟記知識點是解題的關(guān)鍵.5、B【解析】

根據(jù)需要保證不少于50%的騎行是免費的,可得此次調(diào)查的參考統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù).【詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù),故選B.【點睛】本題考查了中位數(shù)的知識,中位數(shù)是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數(shù)列的極大或極小值影響,從而在一定程度上提高了中位數(shù)對分布數(shù)列的代表性。6、C【解析】

∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.7、A【解析】

設(shè)這個正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內(nèi)角與外角的知識點,此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.8、B【解析】

根據(jù)圖象找出一次函數(shù)圖象在反比例函數(shù)圖象上方時對應的自變量的取值范圍即可.【詳解】觀察函數(shù)圖象可發(fā)現(xiàn):或時,一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使成立的取值范圍是或,故選B.【點睛】本題考查了反比例函數(shù)與一次函數(shù)綜合,函數(shù)與不等式,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.9、B【解析】

根據(jù)題意確定出小昱和阿帆所寫的數(shù)字,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)規(guī)律確定出n的值,即可確定出阿帆在該頁寫的數(shù).【詳解】解:小昱所寫的數(shù)為1,3,5,1,…,101,…;阿帆所寫的數(shù)為1,8,15,22,…,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數(shù)為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關(guān)鍵.10、B【解析】

根據(jù)俯視圖是從上往下看得到的圖形解答即可.【詳解】從上往下看得到的圖形是:故選B.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線二、填空題(本大題共6個小題,每小題3分,共18分)11、(2,0)【解析】【分析】作輔助線,構(gòu)建三角形全等,先根據(jù)同弧所對的圓心角是圓周角的二倍得:∠APB=90°,再證明△BPE≌△PAF,根據(jù)PE=AF=3,列式可得結(jié)論.【詳解】連接PB、PA,過B作BE⊥x軸于E,過A作AF⊥x軸于F,∵A(m,﹣3)和點B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,設(shè)P(a,0),∴a+1=3,a=2,∴P(2,0),故答案為(2,0).【點睛】本題考查了圓周角定理和坐標與圖形性質(zhì),三角形全等的性質(zhì)和判定,作輔助線構(gòu)建三角形全等是關(guān)鍵.12、(-2,7).【解析】

解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點C的坐標為:(﹣4,8).設(shè)直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點E的坐標為:(﹣2,7).故答案為(﹣2,7).13、1或2【解析】

先根據(jù)非負數(shù)的性質(zhì)列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【詳解】根據(jù)題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時,三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時,三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.【點睛】本題考查了等腰三角形的性質(zhì),絕對值與算術(shù)平方根的非負性,根據(jù)幾個非負數(shù)的和等于0,則每一個算式都等于0求出x、y的值是解題的關(guān)鍵,難點在于要分情況討論并且利用三角形的三邊關(guān)系進行判斷.14、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.【解析】

讓橫坐標、縱坐標為負數(shù)即可.【詳解】在第三象限內(nèi)點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.15、x≥﹣.【解析】

考點:二次根式有意義的條件.根據(jù)二次根式的意義,被開方數(shù)是非負數(shù)求解.解:根據(jù)題意得:1+2x≥0,解得x≥-.故答案為x≥-.16、y=【解析】解:設(shè)這個反比例函數(shù)的表達式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數(shù)圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數(shù)的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,所有在反比例函數(shù)上的點的橫縱坐標的積應等于比例系數(shù).同時考查了式子的變形.三、解答題(共8題,共72分)17、(1)120°;(2)①作圖見解析;②證明見解析;(3)3.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì),可知∠ACB=60°,在△BCP中,利用三角形內(nèi)角和定理即可得;(2)①根據(jù)題意補全圖形即可;②證明△ACD≌△BCP,根據(jù)全等三角形的對應邊相等可得AD(3)如圖2,作BM⊥AD于點M,BN⊥DC延長線于點N,根據(jù)已知可推導得出BM=【詳解】(1)∵三角形ABC是等邊三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案為120;(2)①∵如圖1所示.②在等邊△ABC中,∠ACB∴∠ACP+∵∠ACP=∴∠CBP+∴∠BPC=180°-∴∠CPD=180°-∵PD=∴△CDP∵∠ACD+∴∠ACD在△ACD和△AC=BC??∴△ACD∴AD=∴AD+(3)如圖2,作BM⊥AD于點M,BN⊥∵∠ADB=∴∠ADB=∴∠ADB=∴BM=又由(2)得,AD+∴S四邊形ABCD==32×2【點睛】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握相關(guān)性質(zhì)定理、正確添加輔助線是解題的關(guān)鍵.18、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】

(1)根據(jù)題意點R與點B重合時t+t=3,即可求出t的值;(2)根據(jù)題意運用t表示出PQ即可;(3)當點R落在□ABCD的外部時可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點P順時針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當運動時間為t秒時,AP=t,PQ=PQ=AP?tanA=t.∵點R與點B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當點P在BC邊上時,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當<t≤3時,重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當3<t≤3時,重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當3<t<9時,重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當DC=DP1=3時,易知AP1=3,t=3.②當DC=DP2時,CP2=2?CD?,∴BP2=,∴t=3+.③當CD=CP3時,t=4.④當CP3=DP3時,CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點睛】本題考查四邊形綜合題、動點問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會用分類討論的思想解決問題,學會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.19、(1)見解析;(2)y=4﹣x+(0≤x≤3);(3)當△AGQ與△CEP相似,線段AG的長為2或4﹣.【解析】

(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進而得出∠BGE=∠EGF,即可得出結(jié)論;

(2)先判斷出△BEG∽△CFE進而得出CF=,即可得出結(jié)論;

(3)分兩種情況,①△AGQ∽△CEP時,判斷出∠BGE=60°,即可求出BG;

②△AGQ∽△CPE時,判斷出EG∥AC,進而得出△BEG∽△BCA即可得出BG,即可得出結(jié)論.【詳解】(1)如圖1,延長FE交AB的延長線于F',∵點E是BC的中點,∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+當CF=4時,即:=4,∴x=3,(0≤x≤3),即:y關(guān)于x的函數(shù)表達式為y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的對角線,∴∠BAC=∠BCA=45°,∵△AGQ與△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG=AB﹣BG=4﹣,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴,∴,∴BG=2,∴AG=AB﹣BG=2,即:當△AGQ與△CEP相似,線段AG的長為2或4﹣.【點睛】本題考核知識點:相似三角形綜合.解題關(guān)鍵點:熟記相似三角形的判定和性質(zhì).20、(1)證明見解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點睛】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當輔助線構(gòu)造全等三角形.21、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】

(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據(jù)拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設(shè)存在點E使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設(shè)在拋物線上還存在點E′,使得以A,C,F(xiàn)′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數(shù)表達式為;(3)存在,理由為:(i)假設(shè)存在點E使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關(guān)于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設(shè)在拋物線上還存在點E′,使得以A,C,F(xiàn)′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).22、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數(shù)的定義可求得OC的長,可求得C、D點坐標,再利用待定系數(shù)法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論