新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第12講 三角函數(shù)恒等變換(練)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第12講 三角函數(shù)恒等變換(練)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第12講 三角函數(shù)恒等變換(練)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第12講 三角函數(shù)恒等變換(練)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第12講 三角函數(shù)恒等變換(練)(解析版)_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第02講三角恒等變換一、單選題1.若SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用弦化切和兩角和的正切展開式化簡計(jì)算可得答案.【詳解】因?yàn)镾KIPIF1<0.所以SKIPIF1<0,解得SKIPIF1<0,于是SKIPIF1<0SKIPIF1<0.故選:C.2.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用誘導(dǎo)公式結(jié)合同角的三角函數(shù)關(guān)系式將SKIPIF1<0化簡為SKIPIF1<0,即可求得答案.【詳解】由題意知SKIPIF1<0,故SKIPIF1<0,故選:A.3.設(shè)SKIPIF1<0,則SKIPIF1<0=(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用和差角的正弦公式和輔助角公式對(duì)SKIPIF1<0進(jìn)行化簡,可得SKIPIF1<0,再利用二倍角的余弦公式即可得到答案【詳解】解:SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,故選:D4.已知函數(shù)SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,再利用同角三角函數(shù)的關(guān)系求出SKIPIF1<0,然后利用兩角和的余弦公式可求得SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:B5.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由二倍角公式將的等式右側(cè)化簡,再利用分式運(yùn)算及兩角和差的余弦公式化簡,根據(jù)SKIPIF1<0,即可求得SKIPIF1<0的值.【詳解】解:由SKIPIF1<0,且SKIPIF1<0即SKIPIF1<0.所以SKIPIF1<0整理得:SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:A.6.已知函數(shù)SKIPIF1<0在SKIPIF1<0處取得最大值,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根輔助角公式和正弦函數(shù)最值求解即可.【詳解】SKIPIF1<0,其中SKIPIF1<0為銳角,SKIPIF1<0.因?yàn)楫?dāng)SKIPIF1<0處取得最大值,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A7.已知角SKIPIF1<0的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與SKIPIF1<0軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn)SKIPIF1<0,其中SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用三角函數(shù)定義求出SKIPIF1<0,再利用二倍角的余弦公式結(jié)合齊次式法求解作答.【詳解】依題意,SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,從而得SKIPIF1<0,所以SKIPIF1<0.故選:D8.公元前六世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派在研究正五邊形和正十邊形的作圖時(shí),發(fā)現(xiàn)了黃金分割約為0.618,這一數(shù)值也可以表示為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為(

)A.1 B.2 C.-1 D.-2【答案】D【分析】由平方關(guān)系結(jié)合二倍角正弦和余弦公式得出答案.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故選:D.二、填空題9.已知SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】先求出SKIPIF1<0,再利用和差角公式即可求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<010.SKIPIF1<0_____.【答案】SKIPIF1<0【分析】通分利用輔助角公式及二倍角公式計(jì)算可得;【詳解】解:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<011.已知SKIPIF1<0,且SKIPIF1<0是第一象限角,則SKIPIF1<0_____________.【答案】SKIPIF1<0【分析】利用兩角差的正切公式求出SKIPIF1<0,再根據(jù)同角三角函數(shù)的基本關(guān)系計(jì)算可得.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因?yàn)镾KIPIF1<0是第一象限角,所以SKIPIF1<0;故答案為:SKIPIF1<0三、解答題12.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的值;(2)若SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用三角恒等變換整理化簡SKIPIF1<0,根據(jù)題意代入整理得SKIPIF1<0,結(jié)合角SKIPIF1<0的范圍求解;(2)根據(jù)題意代入整理,以SKIPIF1<0為整體運(yùn)算求解,注意根據(jù)角的范圍判斷三角函數(shù)值的符號(hào).(1)因?yàn)镾KIPIF1<0.所以SKIPIF1<0.因?yàn)楹瘮?shù)SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.13.已知平面向量SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的解析式;(2)求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)數(shù)量積的坐標(biāo)表示結(jié)合二倍角的正余弦公式和輔助角公式即可得解;(2)根據(jù)正弦函數(shù)的性質(zhì)結(jié)合整體思想即可得解.(1)解:SKIPIF1<0;(2)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域?yàn)镾KIPIF1<0.一、單選題1.已知SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將SKIPIF1<0化為SKIPIF1<0,利用誘導(dǎo)公式以及二倍角的余弦公式,化簡求值,可得答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選:A.2.若SKIPIF1<0,且SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0及二倍角的余弦公式可得SKIPIF1<0,根據(jù)兩角差的正弦公式可得SKIPIF1<0,由誘導(dǎo)公式及SKIPIF1<0的范圍,結(jié)合正弦函數(shù)的單調(diào)性即可求解.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0.由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0.故選:C.3.已知SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意得SKIPIF1<0,進(jìn)而結(jié)合二倍角公式降冪求解即可.【詳解】解:因?yàn)镾KIPIF1<0所以SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,整理得:SKIPIF1<0所以SKIPIF1<0故選:B4.函數(shù)SKIPIF1<0的最小正周期是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】將SKIPIF1<0解析式用正余弦的和差角公式展開化簡,即可得到結(jié)果.【詳解】因?yàn)镾KIPIF1<0

SKIPIF1<0

SKIPIF1<0

SKIPIF1<0所以SKIPIF1<0,故選:B.5.已知角SKIPIF1<0的終邊在直線SKIPIF1<0上,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【分析】由題意可得SKIPIF1<0,然后化簡變形SKIPIF1<0,再給分子分母同除以SKIPIF1<0,化為正切,再代值計(jì)算即可.【詳解】因?yàn)榻荢KIPIF1<0的終邊在直線SKIPIF1<0上,所以當(dāng)SKIPIF1<0時(shí),在直線上取一點(diǎn)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),在直線上取一點(diǎn)SKIPIF1<0,則SKIPIF1<0,綜上SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:A.6.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用商數(shù)關(guān)系式和二倍角公式化簡題設(shè)中的三角函數(shù)式可得SKIPIF1<0,再根據(jù)二倍角的余弦公式可求SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0,故選:D.二、填空題7.化簡:SKIPIF1<0值是________.【答案】SKIPIF1<0【分析】利用和差角的余弦公式和誘導(dǎo)公式進(jìn)行化簡即可【詳解】解:SKIPIF1<0SKIPIF1<0,故答案為:SKIPIF1<08.若函數(shù)SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】由題知SKIPIF1<0,進(jìn)而解方程即可得答案.【詳解】解:因?yàn)楹瘮?shù)SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱,所以函數(shù)SKIPIF1<0在SKIPIF1<0時(shí)取得最值,所以,結(jié)合輔助角公式得:SKIPIF1<0,即SKIPIF1<0,整理得:SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<09.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為________.【答案】SKIPIF1<0【分析】依題意利用和差角公式將其變形為SKIPIF1<0,整理可得SKIPIF1<0,再利用基本不等式計(jì)算可得.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)且SKIPIF1<0,即SKIPIF1<0,等號(hào)成立,SKIPIF1<0取得最大值SKIPIF1<0.故答案為:SKIPIF1<0三、解答題10.如圖,某圓形小區(qū)有兩塊空余綠化扇形草地SKIPIF1<0(圓心角為SKIPIF1<0)和SKIPIF1<0(圓心角為SKIPIF1<0),SKIPIF1<0為圓的直徑.現(xiàn)分別要設(shè)計(jì)出兩塊社區(qū)活動(dòng)區(qū)域,其中一塊為矩形區(qū)域SKIPIF1<0,一塊為平行四邊形區(qū)域SKIPIF1<0,已知圓的直徑SKIPIF1<0百米,且點(diǎn)SKIPIF1<0在劣弧SKIPIF1<0上(不含端點(diǎn)),點(diǎn)SKIPIF1<0在SKIPIF1<0上?點(diǎn)SKIPIF1<0在SKIPIF1<0上?點(diǎn)SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上?點(diǎn)SKIPIF1<0在SKIPIF1<0上,記SKIPIF1<0.(1)經(jīng)設(shè)計(jì),當(dāng)SKIPIF1<0達(dá)到最大值時(shí),取得最佳觀賞效果,求SKIPIF1<0取何值時(shí),SKIPIF1<0最大,最大值是多少?(2)設(shè)矩形SKIPIF1<0和平行四邊形SKIPIF1<0面積和為SKIPIF1<0,求SKIPIF1<0的最大值及此時(shí)SKIPIF1<0的值.【答案】(1)SKIPIF1<0時(shí),SKIPIF1<0最大值為SKIPIF1<0百米(2)SKIPIF1<0百米SKIPIF1<0,SKIPIF1<0【分析】對(duì)于小問1,分別用變量SKIPIF1<0來表達(dá)SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0,得關(guān)于SKIPIF1<0的函數(shù),進(jìn)行三角恒等變換整理成SKIPIF1<0型函數(shù)求最大值;對(duì)于小問2,分別用變量SKIPIF1<0來表達(dá)矩形SKIPIF1<0和平行四邊形SKIPIF1<0面積相加,得關(guān)于SKIPIF1<0的函數(shù),進(jìn)行三角恒等變換整理成SKIPIF1<0型函數(shù)求最大值.(1)在矩形OEFG中,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)镸N∥PQ,SKIPIF1<0,所以SKIPIF1<0,在△OQP中,SKIPIF1<0,SKIPIF1<0,由正弦定理可知:SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0最大值為SKIPIF1<0百米.(2)設(shè)平行四邊形MNPQ邊MN上的高為h,所以有SKIPIF1<0,所以平行四邊形MNPQ的面積為SKIPIF1<0,在矩形OEFG中,SKIPIF1<0,所以矩形OEFG的面積為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0百米2,此時(shí)SKIPIF1<0.一、單選題1.(2022·全國·高考真題)若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由兩角和差的正余弦公式化簡,結(jié)合同角三角函數(shù)的商數(shù)關(guān)系即可得解.【詳解】由已知得:SKIPIF1<0,即:SKIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0,故選:C2.(2022·北京·高考真題)已知函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減 B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減 D.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增【答案】C【分析】化簡得出SKIPIF1<0,利用余弦型函數(shù)的單調(diào)性逐項(xiàng)判斷可得出合適的選項(xiàng).【詳解】因?yàn)镾KIPIF1<0.對(duì)于A選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,A錯(cuò);對(duì)于B選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào),B錯(cuò);對(duì)于C選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,C對(duì);對(duì)于D選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào),D錯(cuò).故選:C.3.(2022·天津)已知SKIPIF1<0,關(guān)于該函數(shù)有下列四個(gè)說法:①SKIPIF1<0的最小正周期為SKIPIF1<0;②SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的取值范圍為SKIPIF1<0;④SKIPIF1<0的圖象可由SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位長度得到.以上四個(gè)說法中,正確的個(gè)數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)三角函數(shù)的圖象與性質(zhì),以及變換法則即可判斷各說法的真假.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0的最小正周期為SKIPIF1<0,①不正確;令SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,②正確;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,③不正確;由于SKIPIF1<0,所以SKIPIF1<0的圖象可由SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長度得到,④不正確.故選:A.4.(2022·浙江)為了得到函數(shù)SKIPIF1<0的圖象,只要把函數(shù)SKIPIF1<0圖象上所有的點(diǎn)(

)A.向左平移SKIPIF1<0個(gè)單位長度 B.向右平移SKIPIF1<0個(gè)單位長度C.向左平移SKIPIF1<0個(gè)單位長度 D.向右平移SKIPIF1<0個(gè)單位長度【答案】D【分析】根據(jù)三角函數(shù)圖象的變換法則即可求出.【詳解】因?yàn)镾KIPIF1<0,所以把函數(shù)SKIPIF1<0圖象上的所有點(diǎn)向右平移SKIPIF1<0個(gè)單位長度即可得到函數(shù)SKIPIF1<0的圖象.故選:D.

5.(2021·全國(文))函數(shù)SKIPIF1<0的最小正周期和最大值分別是(

)A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0和2 C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和2【答案】C【分析】利用輔助角公式化簡SKIPIF1<0,結(jié)合三角函數(shù)周期性和值域求得函數(shù)的最小正周期和最大值.【詳解】由題,SKIPIF1<0,所以SKIPIF1<0的最小正周期為SKIPIF1<0,最大值為SKIPIF1<0.故選:C.6.(2021·全國(文))若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由二倍角公式可得SKIPIF1<0,再結(jié)合已知可求得SKIPIF1<0,利用同角三角函數(shù)的基本關(guān)系即可求解.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.7.(2021·全國)若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】將式子先利用二倍角公式和平方關(guān)系配方化簡,然后增添分母(SKIPIF1<0),進(jìn)行齊次化處理,化為正切的表達(dá)式,代入SKIPIF1<0即可得到結(jié)果.【詳解】將式子進(jìn)行齊次化處理得:SKIPIF1<0SKIPIF1<0.故選:C.二、多選題8.(2022·全國)已知函數(shù)SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,則(

)A.SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減B.SKIPIF1<0在區(qū)間SKIPIF1<0有兩個(gè)極值點(diǎn)C.直線SKIPIF1<0是曲線SKIPIF1<0的對(duì)稱軸D.直線SKIPIF1<0是曲線SKIPIF1<0的切線【答案】AD【分析】根據(jù)三角函數(shù)的性質(zhì)逐個(gè)判斷各選項(xiàng),即可解出.【詳解】由題意得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論