版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第04講數(shù)列求和一、單選題1.在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由等差數(shù)列求和公式可整理得到SKIPIF1<0,進而可得SKIPIF1<0,采用裂項相消法可求得SKIPIF1<0.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.2.已知函數(shù)SKIPIF1<0為奇函數(shù),且SKIPIF1<0,若SKIPIF1<0,則數(shù)列SKIPIF1<0的前2022項和為(
)A.2023 B.2022 C.2021 D.2020【答案】B【分析】由SKIPIF1<0為奇函數(shù),可得SKIPIF1<0,再由SKIPIF1<0,得SKIPIF1<0,然后利用倒序相加法可求得結(jié)果.【詳解】由于函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0因此數(shù)列SKIPIF1<0的前2022項和為SKIPIF1<0.故選:B.3.如圖1所示,古箏有多根弦,每根弦下有一個雁柱,雁柱用于調(diào)整音高和音質(zhì).圖2是根據(jù)圖1繪制的古箏弦及其雁柱的簡易平面圖.在圖2中,每根弦都垂直于x軸,相鄰兩根弦間的距離為1,雁柱所在曲線的方程為SKIPIF1<0,第n根弦(SKIPIF1<0,從左數(shù)第1根弦在y軸上,稱為第0根弦)分別與雁柱曲線和直線SKIPIF1<0交于點SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)和SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0(
)
參考數(shù)據(jù):取SKIPIF1<0.A.814 B.900 C.914 D.1000【答案】C【分析】求出SKIPIF1<0,用錯位相減法求和即可.【詳解】由條件可得SKIPIF1<0①,所以SKIPIF1<0②,-②得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C.4.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則下列結(jié)論錯誤的是(
)A.SKIPIF1<0的值為2B.數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0C.數(shù)列SKIPIF1<0為遞減數(shù)列D.SKIPIF1<0【答案】B【分析】利用SKIPIF1<0與SKIPIF1<0的關(guān)系可求數(shù)列的通項公式,利用SKIPIF1<0可判斷單調(diào)性,利用錯位相減法求SKIPIF1<0.【詳解】當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,故A正確;當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵上式對SKIPIF1<0也成立,∴SKIPIF1<0(SKIPIF1<0),故B錯誤;∵SKIPIF1<0,∴數(shù)列SKIPIF1<0為遞減數(shù)列,故C正確;∵SKIPIF1<0,∴SKIPIF1<0,兩式相減得,SKIPIF1<0,∴SKIPIF1<0,故D正確.故選:B.5.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由SKIPIF1<0利用裂項相消求和可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:D.6.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0再利用裂項相消求和可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0上式成立,故SKIPIF1<0.故選:C.7.已知數(shù)列SKIPIF1<0是遞增的等差數(shù)列,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項,且SKIPIF1<0.若SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】因為SKIPIF1<0是遞增的等差數(shù)列,所以先假設(shè)SKIPIF1<0,接著利用題意得到SKIPIF1<0的方程組,解出SKIPIF1<0的值,就可以得到SKIPIF1<0的通項公式,然后代入SKIPIF1<0,進而求出SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0【詳解】因為數(shù)列SKIPIF1<0是遞增的等差數(shù)列,所以數(shù)列SKIPIF1<0的公差SKIPIF1<0.由題意得SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去).所以SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0故選:A.二、填空題8.已知數(shù)列SKIPIF1<0的通項公式SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】根據(jù)裂項求和即可求解.【詳解】由題知:SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<09.數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0___________.【答案】SKIPIF1<0【分析】利用分組求和法,結(jié)合等差數(shù)列、等比數(shù)列前n項和公式求解作答.【詳解】依題意,SKIPIF1<0.故答案為:SKIPIF1<010.數(shù)列SKIPIF1<0滿足SKIPIF1<0,前16項和為540,則SKIPIF1<0__.【答案】-2【分析】分SKIPIF1<0為奇數(shù)與偶數(shù)兩種情況,分別求得前16項中奇數(shù)項和偶數(shù)項的和,再根據(jù)偶數(shù)項與SKIPIF1<0的關(guān)系求解即可【詳解】因為數(shù)列SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0為奇數(shù)時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0為偶數(shù)時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為前16項和為540,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.三、解答題11.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,設(shè)SKIPIF1<0.(1)證明:SKIPIF1<0是等比數(shù)列;(2)求SKIPIF1<0.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)先求出SKIPIF1<0,對SKIPIF1<0兩邊同時加1,化簡可得結(jié)論,(2)由(1)可得SKIPIF1<0,然后利用分組求和可求得結(jié)果.(1)證明:當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0從而由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是以2為首項,2為公比的等比數(shù)列.(2)由(1)得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<012.已知單調(diào)遞減的正項數(shù)列SKIPIF1<0,SKIPIF1<0時滿足SKIPIF1<0.SKIPIF1<0為SKIPIF1<0前n項和.(1)求SKIPIF1<0的通項公式;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)通過分組分解法化簡已知條件,然后構(gòu)造等差數(shù)列SKIPIF1<0,求得SKIPIF1<0的通項公式,進而求得SKIPIF1<0的通項公式.(2)結(jié)合分析法、裂項求和法證得不等式成立.(1)由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0是單調(diào)遞減的正項數(shù)列,得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0是以SKIPIF1<0為首項,1為公差的等差數(shù)列,則SKIPIF1<0,即SKIPIF1<0.(2)要證:SKIPIF1<0,只需證:SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,而此不等式顯然成立,所以SKIPIF1<0成立.13.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,點SKIPIF1<0在曲線SKIPIF1<0上.(1)證明:數(shù)列SKIPIF1<0為等差數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)由SKIPIF1<0即可求出數(shù)列SKIPIF1<0的通項公式,再證明SKIPIF1<0即可;(2)可利用分組求和法求數(shù)列SKIPIF1<0的前SKIPIF1<0項和.(1)因為點SKIPIF1<0在曲線SKIPIF1<0上,所以SKIPIF1<0,SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時上式也成立,所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0為等差數(shù)列.(2)由(1)知,SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.14.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0.(1)分別求數(shù)列SKIPIF1<0和SKIPIF1<0的通項公式;(2)在SKIPIF1<0與SKIPIF1<0之間插入SKIPIF1<0個數(shù),使這SKIPIF1<0個數(shù)組成一個公差為SKIPIF1<0的等差數(shù)列,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【分析】(1)由SKIPIF1<0可得SKIPIF1<0,兩式作差即可得數(shù)列SKIPIF1<0的遞推關(guān)系,即可求通項,最后驗證SKIPIF1<0是否符合即可;數(shù)列SKIPIF1<0利用累乘法即可求,最后驗證SKIPIF1<0是否符合即可;(2)由題,由等差數(shù)列的性質(zhì)得SKIPIF1<0,即可求出SKIPIF1<0的通項公式,最后利用錯位相減法求SKIPIF1<0即可(1)由SKIPIF1<0可得SKIPIF1<0,兩式相減可得SKIPIF1<0,故數(shù)列SKIPIF1<0從第3項開始是以首項為SKIPIF1<0,公比SKIPIF1<0的等比數(shù)列.又由已知SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0;又SKIPIF1<0也滿足上式,則數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0;由SKIPIF1<0,SKIPIF1<0得:SKIPIF1<0,以上SKIPIF1<0個式子相乘,可得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0滿足上式,所以SKIPIF1<0的通項公式SKIPIF1<0(2)若在SKIPIF1<0與SKIPIF1<0之間插入SKIPIF1<0個數(shù),使這SKIPIF1<0個數(shù)組成一個公差為SKIPIF1<0的等差數(shù)列,則SKIPIF1<0,即為SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,兩式相減得:SKIPIF1<0,所SKIPIF1<0一、單選題1.各項都不為0的數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0滿足SKIPIF1<0其中SKIPIF1<0數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0若SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(
)A.8 B.9 C.10 D.20【答案】D【分析】先由題給條件求得數(shù)列SKIPIF1<0的通項公式,再利用裂項相消法求得數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0,再由SKIPIF1<0恒成立構(gòu)造關(guān)于SKIPIF1<0的不等式,即可求得SKIPIF1<0的最小值【詳解】數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0滿足SKIPIF1<0則SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0又數(shù)列SKIPIF1<0的各項都不為0,則SKIPIF1<0又由SKIPIF1<0,可得SKIPIF1<0則數(shù)列SKIPIF1<0的奇數(shù)項是以1為首項公差為2的等差數(shù)列,SKIPIF1<0數(shù)列SKIPIF1<0的偶數(shù)項是以2為首項公差為2的等差數(shù)列,SKIPIF1<0則數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0則SKIPIF1<0則數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0又SKIPIF1<0,即SKIPIF1<0恒成立,則SKIPIF1<0恒成立又當SKIPIF1<0時SKIPIF1<0的最大值為20,則SKIPIF1<0故選:D2.已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前2021項的和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0得SKIPIF1<0,兩式相減可得數(shù)列SKIPIF1<0的規(guī)律,由此可求SKIPIF1<0的通項公式,從而求出其前n項和SKIPIF1<0,根據(jù)SKIPIF1<0通項公式的特征,采用裂項相消法即可求出結(jié)果.【詳解】∵SKIPIF1<0,SKIPIF1<0(*),∴SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0,∴SKIPIF1<0,兩式相減,得SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0的奇數(shù)項與偶數(shù)項均為公差為4的等差數(shù)列,SKIPIF1<0當SKIPIF1<0為偶數(shù)時,SKIPIF1<0.當SKIPIF1<0為奇數(shù)時,SKIPIF1<0為偶數(shù),∴根據(jù)上式和(*)知SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0的通項公式是SKIPIF1<0,易知SKIPIF1<0是以2為首項,2為公差的等差數(shù)列,故SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0的前n項和為SKIPIF1<0,則SKIPIF1<0.故選:A.3.斐波那契數(shù)列因以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”.此數(shù)列在現(xiàn)代物理?準晶體結(jié)構(gòu)?化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用.斐波那契數(shù)列SKIPIF1<0可以用如下方法定義:SKIPIF1<0,且SKIPIF1<0,若此數(shù)列各項除以4的余數(shù)依次構(gòu)成一個新數(shù)列SKIPIF1<0,則數(shù)列SKIPIF1<0的前2022項和為(
)A.2698 B.2697 C.2696 D.2695【答案】C【分析】根據(jù)SKIPIF1<0,遞推得到數(shù)列SKIPIF1<0,然后再得到數(shù)列SKIPIF1<0是以6為周期的周期數(shù)列求解.【詳解】因為SKIPIF1<0所以數(shù)列SKIPIF1<0為SKIPIF1<0此數(shù)列各項除以4的余數(shù)依次構(gòu)成的數(shù)列SKIPIF1<0為:SKIPIF1<0是以6為周期的周期數(shù)列,所以SKIPIF1<0.故選:C.4.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,記數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,若對于任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實數(shù)k的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知得SKIPIF1<0,根據(jù)等比數(shù)列的定義得數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,由此求得SKIPIF1<0,然后利用裂項求和法求得SKIPIF1<0,進而求得SKIPIF1<0的取值范圍.【詳解】解:依題意SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.5.記數(shù)列SKIPIF1<0中不超過正整數(shù)n的項的個數(shù)為SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前n項的和為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先由定義判斷出當SKIPIF1<0時,SKIPIF1<0,再變形得到SKIPIF1<0,再按照錯位相減法求和,即可求解【詳解】SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0,化簡得SKIPIF1<0,所以SKIPIF1<0.故選:B.6.已知SKIPIF1<0,數(shù)列1,1,2,1,1,2,4,2,1,1,2,4,8,4,2,1,···,1,2,4,···,SKIPIF1<0,SKIPIF1<0,···,2,1,···的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.81 B.90 C.100 D.2021【答案】B【分析】將數(shù)列排成楊輝三角的形式,得到各行所有數(shù)的項及其和的通項公式,再求前i行的數(shù)的和求解.【詳解】依題意,把數(shù)列排列成如下所示的形式:第1行
1第2行
1,2,1第3行
1,2,4,2,1第4行
1,2,4,8,4,2,1…
…第SKIPIF1<0行
1,2,4,…,SKIPIF1<0,…,4,2,1可知此數(shù)列第1行有1項,第2行有3項,第3行有5項,…,第SKIPIF1<0行有SKIPIF1<0項,前SKIPIF1<0行共有SKIPIF1<0項.設(shè)第SKIPIF1<0行的SKIPIF1<0個數(shù)的和為SKIPIF1<0,則SKIPIF1<0.則前SKIPIF1<0行的和SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最小值為90.故選:B7.已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,使得SKIPIF1<0恒成立,則SKIPIF1<0的最小值是(
)A.2 B.3 C.4 D.5【答案】A【分析】根據(jù)遞推關(guān)系式求出SKIPIF1<0,再求和后即可求解.【詳解】函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,可知數(shù)列SKIPIF1<0為遞增數(shù)列,所以SKIPIF1<0,因此SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0恒成立SKIPIF1<0整數(shù)SKIPIF1<0的最小值是2,故選:A二、填空題8.數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0前40項和為________.【答案】SKIPIF1<0【分析】根據(jù)題設(shè)中的遞推關(guān)系可得SKIPIF1<0、SKIPIF1<0,利用分組求和可求SKIPIF1<0前40項和,【詳解】當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0;故SKIPIF1<0SKIPIF1<0,故SKIPIF1<0前40項和為SKIPIF1<0,故答案為:SKIPIF1<09.已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0##SKIPIF1<0【分析】根據(jù)SKIPIF1<0可求SKIPIF1<0,從而可求SKIPIF1<0.易驗證SKIPIF1<0,故可采用倒序相加法求題設(shè)式子的值.【詳解】∵SKIPIF1<0①,∴當SKIPIF1<0時,SKIPIF1<0②,①-②得SKIPIF1<0,∴SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,此時SKIPIF1<0仍然成立,∴SKIPIF1<0.∴當n=1時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,當n=1時,上式也成立,故SKIPIF1<0SKIPIF1<0.由于SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0則SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.三、解答題10.從條件①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,中任選一個,補充到下面問題中,并給出解答.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,___________.(1)求SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,是否存在正整數(shù)SKIPIF1<0使得SKIPIF1<0.【答案】(1)答案見解析(2)答案見解析【分析】(1)若選擇①,根據(jù)數(shù)列遞推式可得到SKIPIF1<0為常數(shù)列,從而求得SKIPIF1<0;若選擇②,根據(jù)數(shù)列遞推式可得SKIPIF1<0,從而得SKIPIF1<0,利用等差數(shù)列通項公式可求得SKIPIF1<0;若選擇③,由SKIPIF1<0變形得,SKIPIF1<0,可得SKIPIF1<0,從而求得SKIPIF1<0,繼而可求SKIPIF1<0;(2)若選擇①或②,可得SKIPIF1<0,利用錯位相減法可求得答案;若選擇③,可得SKIPIF1<0,利用錯位相減法可求得答案;(1)若選擇①,因為SKIPIF1<0,所以SKIPIF1<0,兩式相減得SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為常數(shù)列,而SKIPIF1<0,所以SKIPIF1<0;若選擇②,因為SKIPIF1<0,所以SKIPIF1<0,兩式相減SKIPIF1<0,得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0是等差數(shù)列,所以SKIPIF1<0;若選擇③,由SKIPIF1<0變形得,SKIPIF1<0,所以SKIPIF1<0,由題意知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為等差數(shù)列,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0時,SKIPIF1<0也滿足上式,所以SKIPIF1<0;(2)若選擇①或②,SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,故要使得SKIPIF1<0,即SKIPIF1<0,整理得,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以不存在SKIPIF1<0,使得SKIPIF1<0.若選擇③,依題意,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,兩式相減得:SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,綜上,使得SKIPIF1<0成立的最小正整數(shù)SKIPIF1<0的值為5.11.設(shè)數(shù)列SKIPIF1<0滿足:對任意正整數(shù)n,有SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)將SKIPIF1<0改寫成SKIPIF1<0形式,利用類似SKIPIF1<0與SKIPIF1<0的關(guān)系來處理;(2)使用錯位相減法求和.(1)當n=1,得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0也滿足上式,所以SKIPIF1<0的通項公式為SKIPIF1<0.(2)由(1)及SKIPIF1<0,得SKIPIF1<0.因此SKIPIF1<0,①SKIPIF1<0,②①-②得SKIPIF1<0,化簡得SKIPIF1<0.12.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.(1)計算:SKIPIF1<0,SKIPIF1<0;(2)證明SKIPIF1<0為等差數(shù)列,并求數(shù)列SKIPIF1<0的通項公式;(3)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)證明見解析,SKIPIF1<0(3)SKIPIF1<0【分析】(1)利用特值法可得SKIPIF1<0,SKIPIF1<0;(2)構(gòu)造數(shù)列SKIPIF1<0,即可得證,進而可得SKIPIF1<0,再利用退一相減法可得數(shù)列SKIPIF1<0的通項公式;(3)由(2)得SKIPIF1<0,利用裂項相消法,可得數(shù)列的前SKIPIF1<0項和.(1)令SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0;(2)因為當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0為等差數(shù)列,首項為SKIPIF1<0,公差為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,于是,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,滿足上式,故SKIPIF1<0;(3)因為SKIPIF1<0,則SKIPIF1<0,于是,SKIPIF1<0SKIPIF1<0.13.已知數(shù)列SKIPIF1<0各項都是正數(shù),SKIPIF1<0,對任意n∈N*都有SKIPIF1<0.數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(n∈N*).(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;(2)數(shù)列SKIPIF1<0滿足cn=SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,若不等式SKIPIF1<0對一切n∈N*恒成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,n∈N*;SKIPIF1<0(2)SKIPIF1<0【分析】(1)由數(shù)列的遞推式,結(jié)合等比數(shù)列和等差數(shù)列的定義、通項公式,可得所求;(2)由等比數(shù)列的求和公式和數(shù)列的錯位相減法求和,以及不等式恒成立思想,結(jié)合數(shù)列的單調(diào)性,計算可得所求范圍.(1)數(shù)列SKIPIF1<0各項都是正數(shù),SKIPIF1<0,對任意n∈N*都有SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,②①﹣②可得SKIPIF1<0,因為數(shù)列SKIPIF1<0各項都是正數(shù),所以可化為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是以1為首項,2為公比的等比數(shù)列,所以SKIPIF1<0,n∈N*;數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(n∈N*),可得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,兩式相減可得SKIPIF1<0,所以SKIPIF1<0的奇數(shù)項和偶數(shù)項均為公差為2的等差數(shù)列,可得奇數(shù)項為1,3,5,7,...,2n﹣1,...,偶數(shù)項為2,4,6,...,2n,...,所以SKIPIF1<0;(2)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0兩式相減可得SKIPIF1<0SKIPIF1<0化為SKIPIF1<0,若不等式SKIPIF1<0對一切n∈N*恒成立,即為SKIPIF1<0恒成立,設(shè)SKIPIF1<0,SKIPIF1<0﹣1=SKIPIF1<0﹣1=SKIPIF1<0﹣1=SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,則﹣9SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0﹣SKIPIF1<0,即λ的取值范圍是SKIPIF1<0.14.已知等比數(shù)列SKIPIF1<0的各項均為正數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,且滿足SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項之積為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,若數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)證明見解析【分析】(1)由題意求得等比數(shù)列SKIPIF1<0的公比和首項,可得其通項公式,由數(shù)列SKIPIF1<0的前SKIPIF1<0項之積為SKIPIF1<0可得SKIPIF1<0,結(jié)合SKIPIF1<0可得即SKIPIF1<0,從而SKIPIF1<0是以2為公差的等差數(shù)列,求得答案;(2)利用列項求和法可求得數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0的表達式,結(jié)合數(shù)列的單調(diào)性,即可證明結(jié)論.(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0,化為:SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.又滿足SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∵數(shù)列SKIPIF1<0的前SKIPIF1<0項之積為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0是以2為公差的等差數(shù)列.又SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0(2)SKIPIF1<0,所以數(shù)列SKIPIF1<0的前SKIPIF1<0項和證明:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0隨著n的增大而增大,故SKIPIF1<0所以SKIPIF1<0.一、單選題1.(2021·浙江·高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.記數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】顯然可知,SKIPIF1<0,利用倒數(shù)法得到SKIPIF1<0,再放縮可得SKIPIF1<0,由累加法可得SKIPIF1<0,進而由SKIPIF1<0局部放縮可得SKIPIF1<0,然后利用累乘法求得SKIPIF1<0,最后根據(jù)裂項相消法即可得到SKIPIF1<0,從而得解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0SKIPIF1<0,即SKIPIF1<0根據(jù)累加法可得,SKIPIF1<0,當且僅當SKIPIF1<0時取等號,SKIPIF1<0SKIPIF1<0,由累乘法可得SKIPIF1<0,當且僅當SKIPIF1<0時取等號,由裂項求和法得:所以SKIPIF1<0,即SKIPIF1<0.故選:A.2.(2020·江蘇·高考真題)設(shè){an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列.已知數(shù)列{an+bn}的前n項和SKIPIF1<0,則d+q的值是_______.【答案】SKIPIF1<0【分析】結(jié)合等差數(shù)列和等比數(shù)列前SKIPIF1<0項和公式的特點,分別求得SKIPIF1<0的公差和公比,由此求得SKIPIF1<0.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,根據(jù)題意SKIPIF1<0.等差數(shù)列SK
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)裝修管理2025年度合同2篇
- 二零二五版智慧城市建設(shè)綜合服務(wù)合同5篇
- 2025年度定制門窗設(shè)計與安裝服務(wù)合同4篇
- 2025版企業(yè)食堂特色牛羊肉原料供應(yīng)及配送合作協(xié)議3篇
- 煙臺某零售企業(yè)2025年度供貨合同的標的與義務(wù)3篇
- 2025年高校食堂直供生鮮水果采購合作協(xié)議3篇
- 2025年餐飲店食品安全監(jiān)管服務(wù)合同范本3篇
- 2025年鐵藝欄桿工程制作、安裝及保養(yǎng)服務(wù)協(xié)議3篇
- 二零二五年房產(chǎn)中介傭金調(diào)整補充協(xié)議書3篇
- 2025年度智能教育平臺建設(shè)與運營合同范本3篇
- 2024年安全教育培訓(xùn)試題附完整答案(奪冠系列)
- 2025新譯林版英語七年級下單詞默寫表
- 《錫膏培訓(xùn)教材》課件
- 斷絕父子關(guān)系協(xié)議書
- 福建省公路水運工程試驗檢測費用參考指標
- 《工程勘察資質(zhì)分級標準和工程設(shè)計資質(zhì)分級標準》
- 小學(xué)語文閱讀教學(xué)落實學(xué)生核心素養(yǎng)方法的研究-中期報告
- 眼內(nèi)炎患者護理查房課件
- 2021-2022學(xué)年四川省成都市武侯區(qū)部編版四年級上冊期末考試語文試卷(解析版)
- 中國傳統(tǒng)文化服飾文化
- 大氣污染控制工程 第四版
評論
0/150
提交評論