2024屆江蘇省南京市棲霞區(qū)、雨花區(qū)、江寧區(qū)重點中學中考數學四模試卷含解析_第1頁
2024屆江蘇省南京市棲霞區(qū)、雨花區(qū)、江寧區(qū)重點中學中考數學四模試卷含解析_第2頁
2024屆江蘇省南京市棲霞區(qū)、雨花區(qū)、江寧區(qū)重點中學中考數學四模試卷含解析_第3頁
2024屆江蘇省南京市棲霞區(qū)、雨花區(qū)、江寧區(qū)重點中學中考數學四模試卷含解析_第4頁
2024屆江蘇省南京市棲霞區(qū)、雨花區(qū)、江寧區(qū)重點中學中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省南京市棲霞區(qū)、雨花區(qū)、江寧區(qū)重點中學中考數學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某商店有兩個進價不同的計算器都賣了80元,其中一個贏利60%,另一個虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺2.在平面直角坐標系中,點P(m,2m-2),則點P不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列計算正確的是()A.(a)=a B.a+a=aC.(3a)?(2a)=6a D.3a﹣a=34.下列事件中必然發(fā)生的事件是()A.一個圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時乘以一個數,結果仍是不等式C.200件產品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數5.下列運算正確的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3?a5=a15 D.(a3)4=a76.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發(fā),同時亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數關系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發(fā)25分時兩人第一次相遇 D.出發(fā)35分時兩人相距2000米7.一、單選題在某?!拔业闹袊鴫簟毖葜v比賽中,有7名學生參加了決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前3名,不僅要了解自己的成績,還要了解這7名學生成績的()A.平均數 B.眾數 C.中位數 D.方差8.如圖,在△ABC中,以點B為圓心,以BA長為半徑畫弧交邊BC于點D,連接AD.若∠B=40°,∠C=36°,則∠DAC的度數是()A.70° B.44° C.34° D.24°9.如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數為()A.56° B.62° C.68° D.78°10.設α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-1二、填空題(共7小題,每小題3分,滿分21分)11.閱讀下面材料:數學活動課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”小艾的作法如下:(1)在直線l上任取點A,以A為圓心,AP長為半徑畫?。?)在直線l上任取點B,以B為圓心,BP長為半徑畫弧.(3)兩弧分別交于點P和點M(4)連接PM,與直線l交于點Q,直線PQ即為所求.老師表揚了小艾的作法是對的.請回答:小艾這樣作圖的依據是_____.12.如圖,直線,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進行下去,點A8的坐標為__________.13.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點D、E分別為AM、AB上的動點,則BD+DE的最小值是_____.14.已知扇形的圓心角為120°,弧長為6π,則扇形的面積是_____.15.已知甲、乙兩組數據的折線圖如圖,設甲、乙兩組數據的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)16.如圖,將一個長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.17.如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.19.(5分)拋一枚質地均勻六面分別刻有1、2、3、4、5、6點的正方體骰子兩次,若記第一次出現的點數為a,第二次出現的點數為b,則以方程組的解為坐標的點在第四象限的概率為_____.20.(8分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?21.(10分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數量分別為多少個?(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?22.(10分)某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數量是購買乙種足球數量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;求購買一個甲種足球、一個乙種足球各需多少元;2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?23.(12分)解不等式組:并寫出它的所有整數解.24.(14分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據以往的學習經驗,他想到了方程與函數的關系,一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.根據以上方程與函數的關系,如果我們直到函數y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.佳佳為了解函數y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數的圖象.x…﹣3﹣﹣2﹣﹣1﹣012…y…﹣8﹣0m﹣﹣2﹣012…(1)直接寫出m的值,并畫出函數圖象;(2)根據表格和圖象可知,方程的解有個,分別為;(3)借助函數的圖象,直接寫出不等式x3+2x2>x+2的解集.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:第一個的進價為:80÷(1+60%)=50元,第二個的進價為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點:一元一次方程的應用2、B【解析】

根據坐標平面內點的坐標特征逐項分析即可.【詳解】A.若點P(m,2m-2)在第一象限,則有:m>02m-2>0解之得m>1,∴點P可能在第一象限;B.若點P(m,2m-2)在第二象限,則有:m<02m-2>0解之得不等式組無解,∴點P不可能在第二象限;C.若點P(m,2m-2)在第三象限,則有:m<02m-2<0解之得m<1,∴點P可能在第三象限;D.若點P(m,2m-2)在第四象限,則有:m>02m-2<0解之得0<m<1,∴點P可能在第四象限;故選B.【點睛】本題考查了不等式組的解法,坐標平面內點的坐標特征,第一象限內點的坐標特征為(+,+),第二象限內點的坐標特征為(-,+),第三象限內點的坐標特征為(-,-),第四象限內點的坐標特征為(+,-),x軸上的點縱坐標為0,y軸上的點橫坐標為0.3、A【解析】

根據同底數冪的乘法的性質,冪的乘方的性質,積的乘方的性質,合并同類項的法則,對各選項分析判斷后利用排除法求解.【詳解】A.(a2)3=a2×3=a6,故本選項正確;B.a2+a2=2a2,故本選項錯誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項錯誤;D.3a﹣a=2a,故本選項錯誤.故選A.【點睛】本題考查了合并同類項,同底數冪的乘法,冪的乘方,積的乘方和單項式乘法,理清指數的變化是解題的關鍵.4、C【解析】

直接利用隨機事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項錯誤;B、不等式的兩邊同時乘以一個數,結果仍是不等式,是隨機事件,故此選項錯誤;C、200件產品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數,是隨機事件,故此選項錯誤;故選C.【點睛】此題主要考查了隨機事件、必然事件、不可能事件,正確把握相關定義是解題關鍵.5、B【解析】

根據同底數冪的乘法、除法、冪的乘方依次計算即可得到答案.【詳解】A、a3+a3=2a3,故A錯誤;B、a6÷a2=a4,故B正確;C、a3?a5=a8,故C錯誤;D、(a3)4=a12,故D錯誤.故選:B.【點睛】此題考查整式的計算,正確掌握同底數冪的乘法、除法、冪的乘方的計算方法是解題的關鍵.6、B【解析】

C、由二者第二次相遇的時間結合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當時,出現拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數圖象,可知:出發(fā)35分鐘時亮亮到達A地,根據出發(fā)35分鐘時兩人間的距離明明的速度出發(fā)時間,即可求出出發(fā)35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,

出發(fā)20分時兩人第一次相遇,C選項錯誤;

亮亮的速度為米分,

兩人的速度和為米分,

明明的速度為米分,A選項錯誤;

第二次相遇時距離B地距離為米,B選項正確;

出發(fā)35分鐘時兩人間的距離為米,D選項錯誤.

故選:B.【點睛】本題考查了一次函數的應用,觀察函數圖象,逐一分析四個選項的正誤是解題的關鍵.7、C【解析】

由于其中一名學生想要知道自己能否進入前3名,共有7名選手參加,故應根據中位數的意義分析.【詳解】由于總共有7個人,且他們的成績各不相同,第4的成績是中位數,要判斷是否進入前3名,故應知道中位數的多少.故選C.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的統(tǒng)計量有平均數、中位數、眾數、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當的運用.8、C【解析】

易得△ABD為等腰三角形,根據頂角可算出底角,再用三角形外角性質可求出∠DAC【詳解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故選C.【點睛】本題考查三角形的角度計算,熟練掌握三角形外角性質是解題的關鍵.9、C【解析】分析:由點I是△ABC的內心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內接四邊形的外角等于內對角可得答案.詳解:∵點I是△ABC的內心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內接于⊙O,∴∠CDE=∠B=68°,故選C.點睛:本題主要考查三角形的內切圓與內心,解題的關鍵是掌握三角形的內心的性質及圓內接四邊形的性質.10、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數的關系.二、填空題(共7小題,每小題3分,滿分21分)11、到線段兩端距離相等的點在線段的垂直平分線上或兩點確定一條直線或sss或全等三角形對應角相等或等腰三角形的三線合一【解析】

從作圖方法以及作圖結果入手考慮其作圖依據..【詳解】解:依題意,AP=AM,BP=BM,根據垂直平分線的定義可知PM⊥直線l.因此易知小艾的作圖依據是到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.故答案為到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.【點睛】本題主要考查尺規(guī)作圖,掌握尺規(guī)作圖的常用方法是解題關鍵.12、(128,0)【解析】

∵點A1坐標為(1,0),且B1A1⊥x軸,∴B1的橫坐標為1,將其橫坐標代入直線解析式就可以求出B1的坐標,就可以求出A1B1的值,OA1的值,根據銳角三角函數值就可以求出∠xOB3的度數,從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點A2、A3…的坐標規(guī)律,最后求出A8的坐標.【詳解】點坐標為(1,0),

點的橫坐標為1,且點在直線上

在中由勾股定理,得

,

在中,

.

.

.

.

故答案為.【點睛】本題是一道一次函數的綜合試題,也是一道規(guī)律試題,考查了直角三角形的性質,特別是所對的直角邊等于斜邊的一半的運用,點的坐標與函數圖象的關系.13、8【解析】試題分析:過B點作于點,與交于點,根據三角形兩邊之和小于第三邊,可知的最小值是線的長,根據勾股定理列出方程組即可求解.過B點作于點,與交于點,設AF=x,,,,(負值舍去).故BD+DE的值是8故答案為8考點:軸對稱-最短路線問題.14、27π【解析】試題分析:設扇形的半徑為r.則,解得r=9,∴扇形的面積==27π.故答案為27π.考點:扇形面積的計算.15、>【解析】

要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據折線統(tǒng)計圖結合根據平均數的計算公式求出這兩組數據的平均數;接下來根據方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術平均數,折線統(tǒng)計圖,解題的關鍵是熟練的掌握方差,算術平均數,折線統(tǒng)計圖.16、1【解析】

由折疊可得∠3=180°﹣2∠2,進而可得∠3的度數,然后再根據兩直線平行,同旁內角互補可得∠1+∠3=180°,進而可得∠1的度數.【詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.17、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質,勾股定理,兩點之間線段最短的性質.得出動點P所在的位置是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)【解析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據切線的性質得到OD⊥EF,從而可計算出DE的長,然后根據扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.19、【解析】

解方程組,根據條件確定a、b的范圍,從而確定滿足該條件的結果個數,利用古典概率的概率公式求出方程組只有一個解的概率.【詳解】∵,得若b>2a,即a=2,3,4,5,6

b=4,5,6符合條件的數組有(2,5)(2,6)共有2個,若b<2a,符合條件的數組有(1,1)共有1個,∴概率p=.故答案為:.【點睛】本題主要考查了古典概率及其概率計算公式的應用.20、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】

(1)根據正方形的性質,可得EF=CE,再根據∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數表示△AEF的面積,再利用函數的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質、矩形性質以及全等三角形的判斷和性質和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.21、(1)LED燈泡與普通白熾燈泡的數量分別為200個和100個;(2)1350元.【解析】

1)設該商場購進LED燈泡x個,普通白熾燈泡的數量為y個,利用該商場購進了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;

(2)設該商場購進LED燈泡a個,則購進普通白熾燈泡(120-a)個,這批燈泡的總利潤為W元,利用利潤的意義得到W=(60-45)a+(30-25)(120-a)=10a+1,再根據銷售完這批燈泡時獲利最多且不超過進貨價的30%可確定a的范圍,然后根據一次函數的性質解決問題.【詳解】(1)設該商場購進LED燈泡x個,普通白熾燈泡的數量為y個.根據題意,得解得答:該商場購進LED燈泡與普通白熾燈泡的數量分別為200個和100個.(2)設該商場再次購進LED燈泡a個,這批燈泡的總利潤為W元.則購進普通白熾燈泡(120﹣a)個.根據題意得W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W隨a的增大而增大,∴a=75時,W最大,最大值為1350,此時購進普通白熾燈泡(120﹣75)=45個.答:該商場再次購進LED燈泡75個,購進普通白熾燈泡45個,這批燈泡的總利潤為1350元.【點睛】本題考查了二元一次方程組和一次函數的應用,根據實際問題找到等量關系列方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論