2025年湖北省襄陽五中、鐘祥一中、夷陵中學(xué)高考模擬(7)數(shù)學(xué)試題含解析_第1頁
2025年湖北省襄陽五中、鐘祥一中、夷陵中學(xué)高考模擬(7)數(shù)學(xué)試題含解析_第2頁
2025年湖北省襄陽五中、鐘祥一中、夷陵中學(xué)高考模擬(7)數(shù)學(xué)試題含解析_第3頁
2025年湖北省襄陽五中、鐘祥一中、夷陵中學(xué)高考模擬(7)數(shù)學(xué)試題含解析_第4頁
2025年湖北省襄陽五中、鐘祥一中、夷陵中學(xué)高考模擬(7)數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025年湖北省襄陽五中、鐘祥一中、夷陵中學(xué)高考模擬(7)數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交2.為虛數(shù)單位,則的虛部為()A. B. C. D.3.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.4.若集合,,則=()A. B. C. D.5.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.46.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40407.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.8.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.9.曲線在點處的切線方程為,則()A. B. C.4 D.810.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.11.已知變量,滿足不等式組,則的最小值為()A. B. C. D.12.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角的對邊分別是,若,,則____.14.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.15.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.16.設(shè)O為坐標(biāo)原點,,若點B(x,y)滿足,則的最大值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)當(dāng)時,求實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實數(shù)的取值范圍.19.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護意識,高二一班組織了環(huán)境保護興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機變量的分布列和期望20.(12分)已知函數(shù).(1)當(dāng)時,不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項和為,證明:.21.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.22.(10分)在直角坐標(biāo)系中,點的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點在圓外.(1)求的取值范圍.(2)設(shè)直線與圓相交于兩點,若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.2.C【解析】

利用復(fù)數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.本題考查復(fù)數(shù)的運算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯題.3.D【解析】

由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.4.C【解析】試題分析:化簡集合故選C.考點:集合的運算.5.C【解析】

首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.6.D【解析】

計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.本題考查了斐波那契數(shù)列,意在考查學(xué)生的計算能力和應(yīng)用能力.7.B【解析】

設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.8.D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.9.B【解析】

求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.10.B【解析】

根據(jù)比例關(guān)系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設(shè)會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.11.B【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點,,在處有最小值,最小值為.故選:B.本題主要考查簡單的線性規(guī)劃,運用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.12.D【解析】

先用復(fù)數(shù)的除法運算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.本題考查復(fù)數(shù)的基本概念和基本運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.本題主要考查了求三角形的一個內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.14.60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.15.【解析】

由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進而表示出內(nèi)切球的半徑,并求出半徑的最大值,進而求出球的體積的最大值.【詳解】設(shè),,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當(dāng)且僅當(dāng)時,等號成立,此時.故答案為:.本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.16.【解析】,可行域如圖,直線與圓相切時取最大值,由三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)當(dāng)時,的取值范圍為;當(dāng)時,的取值范圍為.【解析】

(1)當(dāng)時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當(dāng)且僅當(dāng)時,取“”,分類討論,即可求解.【詳解】(1)當(dāng)時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當(dāng)且僅當(dāng)時,取“”,所以當(dāng)時,的取值范圍為;當(dāng)時,的取值范圍為.本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應(yīng)用,其中解答中熟記含絕對值不等式的解法,以及合理應(yīng)用絕對值的三角不等式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18.(1)(2)【解析】

(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數(shù),∴當(dāng)時,即本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關(guān)鍵.19.(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.20.(1);(2)證明見解析.【解析】

(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時,方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時,,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時,方程有兩個不等實根,且滿足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當(dāng)時,在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計算能力,是一道難題.21.(1)見解析(2)【解析】

(1)通過勾股定理得出,又,進而可得平面,則可得到,問題得證;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因為平面,所以,又因為,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計算能力,是中檔題.22.(1)(2)【解析】

(1)首先將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論