![為智能賦能-人工智能和數(shù)據(jù)中心能耗分析_第1頁](http://file4.renrendoc.com/view8/M02/3A/22/wKhkGWbe9GKAI97MAAFfPr7uQCI817.jpg)
![為智能賦能-人工智能和數(shù)據(jù)中心能耗分析_第2頁](http://file4.renrendoc.com/view8/M02/3A/22/wKhkGWbe9GKAI97MAAFfPr7uQCI8172.jpg)
![為智能賦能-人工智能和數(shù)據(jù)中心能耗分析_第3頁](http://file4.renrendoc.com/view8/M02/3A/22/wKhkGWbe9GKAI97MAAFfPr7uQCI8173.jpg)
![為智能賦能-人工智能和數(shù)據(jù)中心能耗分析_第4頁](http://file4.renrendoc.com/view8/M02/3A/22/wKhkGWbe9GKAI97MAAFfPr7uQCI8174.jpg)
![為智能賦能-人工智能和數(shù)據(jù)中心能耗分析_第5頁](http://file4.renrendoc.com/view8/M02/3A/22/wKhkGWbe9GKAI97MAAFfPr7uQCI8175.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024WhitePaper
PoweringIntelligence
AnalyzingArtificialIntelligenceandDataCenterEnergyConsumption
2|PoweringIntelligenceMay2024
EXECUTIVESUMMARY
KeyMessages
?IntheUnitedStates,poweringdatacenters,providingcleanenergyfor
manufacturing,supportingindustrialonshoring,andelectrifyingtransporta-tionaredrivingrenewedelectricloadgrowth.Clustersofnew,largepoint
loadsaretestingtheabilityofelectriccompaniestokeeppace.
?Datacentersareoneofthefastestgrowingindustriesworldwide.Between
2017and2021,electricityusedbyMeta,Amazon,Microsoft,andGoogle—themainprovidersofcommerciallyavailablecloudcomputinganddigitalservices—morethandoubled.
?Afundamentaluncertaintyinprojectingdatacenterloadgrowthcomesfromthebroademergenceofartificialintelligence(AI)technologiesinbusiness
anddailylife—punctuatedbytheexplosionintopublicconsciousnessofgen-erativeAImodels,suchasOpenAI’sChatGPT,releasedinNovember2022.
WhileAIapplicationsareestimatedtouseonly10%–20%ofdatacenterelectricitytoday,thatpercentageisgrowingrapidly.
?AImodelsaretypicallymuchmoreenergy-intensivethanthedataretrieval,streaming,andcommunicationsapplicationsthatdrovedatacentergrowthoverthepasttwodecades.At2.9watt-hoursperChatGPTrequest,AIque-
riesareestimatedtorequire10xtheelectricityoftraditionalGooglequeries,whichuseabout0.3watt-hourseach;andemerging,computation-intensivecapabilitiessuchasimage,audio,andvideogenerationhavenoprecedent.
?Toprovideanearlyassessmentofpotentialdatacenterloadgrowthatthenationallevel,EPRIhasdevelopedlow,moderate,high,andhighergrowth
scenariosfordatacenterloadsfrom2023to2030.Datacentersgrowto
consume4.6%to9.1%ofU.S.electricitygenerationannuallyby2030versusanestimated4%today.
?Whilethenational-levelgrowthestimatesaresignificant,itisevenmore
strikingtoconsiderthegeographicconcentrationoftheindustryandthe
localchallengesthisgrowthcancreate.Today,fifteenstatesaccountfor80%ofthenationaldatacenterload,withdatacentersestimatedtocompriseaquarterofVirginia’selectricloadin2023.Concentrationofdemandisalso
evidentglobally,withdatacentersprojectedtomakeupalmostone-thirdofIreland’stotalelectricitydemandby2026.
?WiththeshifttocloudcomputingandAI,newdatacentersaregrowingin
size.Itisnotunusualtoseenewcentersbeingbuiltwithcapacitiesfrom100to1000megawatts—roughlyequivalenttotheloadfrom80,000to800,000homes.Connectionleadtimesofonetotwoyears,demandsforhighly
reliablepower,andrequestsforpowerfromnew,non-emittinggenerationsourcescancreatelocalandregionalelectricsupplychallenges.
?EPRIhighlightsthreeessentialstrategiestosupportrapiddatacenterexpan-sion:
1.Datacenterefficiencyimprovementsandincreasedflexibility.
2.Closecoordinationbetweendatacenterdevelopersandelectriccom-
paniesregardingdatacenterpowerneeds,timing,andflexibility,aswellaselectricsuppliesanddeliveryconstraints.
3.Bettermodelingtoolstoplanthe5–10+yeargridinvestmentsneeded
toanticipateandaccommodatedatacentergrowthwithoutnegatively
impactingothercustomersandtoidentifystrategiesformaintaininggridreliabilitywiththeselarge,noveldemands.
3|PoweringIntelligenceMay2024
TABLEOFCONTENTS
EXECUTIVESUMMARY 2
KeyMessages 2
PotentialImpactsofArtificialIntelligenceonDataCenterLoadGrowth 4
EPRIU.S.DataCenterLoadProjections 4
DataCenterPowerDemandsAreConcentratedinaFewRegions 5
ARoadmaptoSupportRapidDataCenterExpansion 6
Introduction 7
ResearchQuestions 7
DataCentersintheUnitedStates 7
DataCenters’PrimaryElectricity-ConsumingHardwareandEquipment 9
AIandDataCenterPowerConsumptionInsights 10
ImmenseVolumesofDataareBeingProcessedDaily 10
HistoryofEnergyEfficiencyintheDataCenterIndustry 11
UnevenGeographicDistributionCreatesImbalanceinDataCenterLoad 12
AIImplicationsforPowerConsumption 14
ChatGPTandOtherLargeLanguageModels(LLMs) 15
ForecastingDataCenterLoadGrowthto2030 17
FourScenariosBasedonHistoricalData,ExpertInsights,andCurrentTrends 17
EnergyEfficiency,LoadManagementandCleanElectricitySupply 18
Energy-EfficientTrainingAlgorithms 18
Energy-EfficientHardware 19
Energy-EfficientCoolingTechnologies 19
ScalableCleanEnergyUse 20
MonitoringandAnalytics 20
ReducingDataCenters’EnvironmentalFootprint 21
ActionstoSupportRapidDataCenterExpansion 21
ImproveDataCenterOperationalEfficiencyandFlexibility 22
IncreaseCollaborationthroughaSharedEnergyEconomyModelforSustainableDataCenters 22
BetterAnticipateFuturePointLoadGrowththroughImprovedForecastingandModeling 23
AppendixA:State-SpecificScenarios 24
ProjectedDataCenterLoadScenariosforTop15States 24
RegionalDifferencesinDataCenterCapacitiesbyMetropolitanArea 27
ProjectionsofPotentialPowerConsumptionfor44States 28
AppendixB:InsightsIntotheEnergyUseofAIModels 29
References 31
4|PoweringIntelligenceMay2024
PotentialImpactsofArtificialIntelligenceonDataCenterLoadGrowth
Datacenteroperationisoneofthefastestgrowingindus-
triesworldwide.TheInternationalEnergyAgencyrecentlyprojectedthatglobaldatacenterelectricitydemand
willmorethandoubleby2026.IntheUnitedStates,thenationaloutlookcouldresembletheglobaloutlook,butishighlyuncertain.
Onekeyuncertaintythatcouldchangethetrajectoryof
datacenterloadgrowthistheuseofgenerativeAImodels.Bothpublicandcorporateimaginationsweretriggeredby
thereleaseofOpenAI’sChatGPTonNovember30,2022.Ev-idenceabouthowwidelythesetoolswillbeusedandhowmuchtheywillchangecomputationalneedsisjuststartingtoemerge.Theseearlyapplicationswereestimatedtore-
quireabouttentimestheelectricity—from0.3watt-hoursforatraditionalGooglesearchto2.9watt-hoursforaChat-GPTquery—torespondtouserqueries.Creationoforiginalmusic,photos,andvideosbaseduponuserpromptsand
otheremergingAIapplicationscouldrequiremuchmorepower.With5.3billionglobalinternetusers,widespreadadoptionofthesetoolscouldpotentiallyleadtoastep
changeinpowerrequirements.Ontheotherhand,his-
toryhasshownthatdemandforincreasedprocessinghaslargelybeenoffsetbydatacenterefficiencygains.
EPRIU.S.DataCenterLoadProjections
Drawingonpublicinformationaboutexistingdatacenters,publicestimatesofindustrygrowth,andrecentelectricity
demandforecastsbyindustryexperts,EPRIpreparedfour
scenariosofpotentialelectricityconsumptioninU.S.data
centersduringtheperiodfrom2023to2030(FigureES-1).Thebluelineinthefigure,runningfrom2000to2020,
traceshistoricaldatacenterelectricityconsumptionesti-
mates.From2000to2010,datacenterloadgrewascentersexpandedacrossthecountrytosupporttheemerging
internet.From2010to2017,despitecontinuedgrowthincomputingdemandsanddatastoragethisloadgrowthflat-tenedduetoefficiencygainsandthereplacementofsmall,relativelyinefficientcorporatedatacenterswithlarge,
cloudcomputingfacilities.Inrecentyears,loadgrowthhaslikelyaccelerated,drivenbyemergingAIapplicationsandCOVID-eraincreasesindemandforserviceslikestreamingandvideoconferencing.Thelightblueareahighlightsun-certaintyinarangeofdatacenterelectricityconsumptionestimatesfor2021to2023.Coloredbandsshowthefour
projections,whichcombineestimatesofincreaseddata
processingneedswithassumptionsaboutefficiencygains.Thewidthsofthesebandscarryforwardtheuncertaintyaboutthe2023startingloadlevel:
?Lowgrowth—3.7%annualloadgrowthbasedonaStatistaprojectionofdatacenterfinancialgrowthis-suedpriortothereleaseofChatGPT.
ANNUAL
%OF2030ELECTRICIT
Y
LowgrowthModerategro
4.6%50%
Highgrowt
h10%
.
6.8%
Max
Averagehist
oricaldata
Min
20002005201020152020
20252030
SCENARIO
GROWTHRA
TECONSUMPTI
ON
600
500
ElectricityConsumption(TWh/y)
wth5%
3.7%
400
Highergrow
9.1%
th15%
300
200
100
0
FigureES-1.ProjectionsofpotentialelectricityconsumptionbyU.S.datacenters:2023–2030.%of2030electricityconsumptionprojectionsassumethatallother(non-datacenter)loadincreasesat1%annually.
5|PoweringIntelligenceMay2024
?Moderategrowth—5%annualloadgrowthbasedonanexpertassessmentcommissionedbyEPRI.
?Highgrowth—10%annualloadgrowthconsistentwithbothaMcKinseyestimateandanotherexpertassess-
mentcommissionedbyEPRIinsummer2023.
?Highergrowth—15%annualgrowthbasedupona
commissionedexpertassessmentconsistentwithrapidexpansionofAIapplicationsandlimitedefficiency
gains.
Theestimatesofdatacenters’shareoftotalU.S.electricityconsumptionin2030—9.1%,6.8%,5.0%,and4.6%—as-
sumethatallotherloadsincreaseat1%peryear.Data
centersaccountedforabout4%ofthetotalloadin2023(averageestimate).
DataCenterPowerDemandsAreConcentratedinaFewRegions
Fifteenstatesaccountedforanestimated80%ofthe
nationaldatacenterloadin2023.Rankedfromhighesttolowest,theyareVirginia,Texas,California,Illinois,Oregon,Arizona,Iowa,Georgia,Washington,Pennsylvania,New
York,NewJersey,Nebraska,NorthDakota,andNevada.
Concentrationofdemandisalsoevidentglobally,withtheInternationalEnergyAgencyrecentlyprojectingthatdatacentersinIrelandcouldaccountforalmostone-thirdof
Ireland’stotalelectricitydemandby2026.
ThemapinFigureES-2showstheeffectin2030ofapplyingtheannualU.S.datacentergrowthrates(averagedacross
thefourscenarios)toprojectstate-levelloadsagainsta
backdropof1%annualgrowthinotherloads.Withevenlyspreadgrowth,thedatacentershareofloadinVirginiain-creasestoalmost50%inthehighergrowthscenarioandto36%whenaveragedacrossthefourscenarios.Thesharesinotherstatesvarywidelywithfiveotherstatesprojectedtoapproach20%ormoreofelectricitydemandunderthese
simplifiedassumptions.Inreality,loadgrowthisunlikely
tobespreadevenly.Datacentersfavorsiteswhereinter-
netconnectionsarestrong;whereelectricityprices,land
costs,anddisruptiveeventsarelow;whereskilledlaboris
available;nearpopulationcentersandusers;andwherethecenterscandevelopbackuppowertoensurepowersupply(usuallynaturalgasordieselgenerators).Theadditional
l
I
\
/
2030DataCenter%ofStateElectricityConsumption
0–5%5–10%10–15%15–20%20+%
FigureES-2.2030projecteddatacentershareofelectricityconsumption(assumesaverageofthefourgrowthscenariosandthatnon-datacenterloadsgrowat1%annually)[4,8,9]
6|PoweringIntelligenceMay2024
requirementofsomedevelopersfornew,cleanelectricitygenerationsourcesaddstothechallengeofdevelopinganddeliveringthisnewgeneration.
ARoadmaptoSupportRapidDataCenterExpansion
Themostseriouschallengestodatacenterexpansionare
localandregionalandresultfromthescaleofthecenters
themselvesandmismatchesininfrastructuretiming.A
typicalnewdatacenterof100to1000megawattsrepre-
sentsaloadequaltothatofanewneighborhoodof80,000to800,000averagehomes.Whileneighborhoodsrequire
manyyearstoplanandbuild,datacenterscanbedevel-
opedandconnectedtotheinternetinonetotwoyears.
Newtransmission,incontrast,takesfourormoreyearsto
plan,permit,andconstruct.Anddevelopingandconnectingnewgenerationcanalsotakeyears.
EPRIhighlightsthreeessentialstrategiestosupportrapiddatacenterexpansion.Thesestrategiesemphasizein-
creasedcollaborationbetweendatacenterdevelopersandelectriccompanies.
1.Improvedatacenteroperationalefficiencyandflex-
ibility.Althoughgainsindatacenteroperationalef-
ficiencyhaveplateauedinrecentyears,thereareclearopportunitiesforfurtherimprovement,includingmoreefficientIThardware;lowerelectricityuseforcooling,lighting,andsecurity;andmoreefficientAIdevelop-
mentanddeploymentstrategies.Effortstoincreasebothtemporalandspatial(i.e.,spreadingcompute
geographically)flexibilityarecriticaltohelpingaccom-modatethesenewloads.
2.Increasecollaborationbetweendatacenterdevel-
opersandelectriccompanies.Developingadeeper
understandingofdatacenterpowerneeds,timing,andpotentialflexibilities—whileassessinghowtheymatchavailableelectricsuppliesanddeliveryconstraints—cancreateworkablesolutionsforall.Enabledbytechnol-
ogyandsupportingpolicies,datacenterbackupgen-
erators,poweredbycleanfuels,couldsupportamorereliablegridwhilereducingthecostofdatacenterop-eration.Shiftingthedatacenter-gridrelationshipfromthecurrent“passiveload”modeltoacollaborative
“sharedenergyeconomy”—withgridresourcespower-ingdatacentersanddatacenterbackupresources
contributingtogridreliabilityandflexibility—couldnotonlyhelpelectriccompaniescontendwiththeexplo-
sivegrowthofAIbutalsocontributetoaffordabilityandreliabilityforallelectricityusers.
3.Improvepointloadforecastingtobetteranticipate
futurepointloadgrowthandmodelingoftransient
systembehaviortomaintainreliability.Forecastsneedtomakebetterprojectionsdescribingnewpointload
locations,magnitudes,andtimingalongsidebetter
techniquesformakingdecisions—tobuildornotbuildlonglead-timeinfrastructure—whilefacingtheeco-
nomic,regulatory,andpoliticaluncertaintyassociatedwithsitingtheselargepointloads.Also,real-timemod-elingofdatacenteroperationalcharacteristicsinan
increasinglyinverter-basedgridisneededtomaintainreliability.
7|PoweringIntelligenceMay2024
INTRODUCTION
ResearchQuestions
Asthenumberandsizeofdatacentersexpandtosupportcontinuedgrowthindataprocessing,internettraffic,andrapidexpansioninartificialintelligence(AI)applications,somecriticalquestionsemerge:
?Howrapidlycanweexpectdatacenterstoexpand,andhowdoestherapidgrowthinAIchangetheirpower
demands?
?Whatistheimpactofthesedevelopmentsonelectricloadandresourceadequacy?
?Whatimplicationsdothesetrendshaveforfutureelec-tricityinfrastructureplanning?
?Howcanthedatacenterandelectricutilityindustriesworktogethertosupportrapiddatacenterexpansion?
DataCentersintheUnitedStates
AsofMarch2024,therewereapproximately10,655datacentersglobally;halfofthem,5,381,wereintheUnitedStates.Justoverthreeyearsago,inJanuary2021,therewereapproximately8,000datacenters,withaboutone-thirdofthemintheUnitedStates[1].
Theconstructionofnewdatacentersisacceleratingata
rapidpace,largelydrivenbydemandforAI-poweredtaskssuchasspeechrecognition,tailoreddiagnostics,logistics,
internetofthings(IoT),andgenerativeAI.TheexpansionofinterestingenerativeAIisparticularlynotableduetothe
overnightpopularityofChatGPT,releasedonNovember30,2022,markingthepublic-facingstartofatechnologyrace.
Datacentersvarysignificantlyindesignandpurposeandaregenerallygroupedintotwocategories,smallorlarge
scale.Small-scaledatacenters,representingabout10%ofU.S.datacenterload[2],typicallycatertolocalizedopera-tionsandservicesmallbusinesses,governmentfacilities,
orspecificdepartmentalneedswithinlargercorporations.Theyincludeserverrooms/closetsembeddedinbuildingsand“edgedatacenters,”whicharestrategicallylocatedontheouteredgesofnetworkstobringcomputingcapabilitiesclosertouserswhoaregeographicallydistantfromlarge
clouddatacenters[3].Thoughtheelectricitydemandsofeachinstallationarerelativelymodest—500kilowatts(kW)to2megawatts(MW)—theyaccountforroughlyhalfofallservers[3].Marketresearchanalystshaveprojectedthe
globaledgedatacentermarkettogrowatacompoundan-nualgrowthrate(CAGR)of22.1%to2030[4],highlightingtherisingimportanceofsmall-scaleandedgedatacentersindigitalinfrastructure.
Large-scalecommercialdatacentersaredesignedtoserveextensiveoperationsandoftenservemultiplebusinesses
orevenentireindustries.Thesedatacentersseekproximitytocustomersandaskilledworkforceandcanbenefitfromlowerlandcosts,propertytaxes,laborrates,energyprices,andriskofsevereweatherorseismicactivity[5].Figures
1–3showmapsofvariouslarge-scalefacilitytypes,whichinclude:
?Enterprisedatacenters,whichareownedandoperatedbysinglecompaniesfortheirexclusivecomputingandnetworkinguse.Theseaccountforabout20–30%of
totalload[2,6].
?Co-locationcenters,whereseveralbusinessesmayrentspacetohousetheirserversandotherhardwarewithsharedenergyandcoolinginfrastructure.
?Hyperscaledatacenters,whicharecapableofrapidlyscalinguptheiroperationstomeetthevastcomputingneedsofcloudgiantslikeAmazonAWS,GoogleCloud,andMicrosoftAzure.Giventheirlargescaleandrecentemergence,theyareoftenattheforefrontofelectric-ityconsumptionandefficiencyinnovations.Hyperscaleandco-locationcenterstogetheraccountforthelion’sshareofU.S.datacenterload—about60%–70%[7].
8|PoweringIntelligenceMay2024
EnterpriseDataCenters
EnterpriseDataCenters(numberperstate)
0258
Figure1.U.S.enterprisedatacenterdistributionasof2022[4,8,9]
oCo-LocationDataCenters
Co-LocationDataCenters(numberperstate)
0163
Figure2.U.S.co-locationdatacenterdistributionasof2022[4,8,9]
9|PoweringIntelligenceMay2024
aHyperscaleDataCenters
HyperscaleDataCenters(numberperstate)
040
Figure3.U.S.hyperscaledatacenterdistributionasof2022[4,8,9]
DataCenters’PrimaryElectricity-
ConsumingHardwareandEquipment
Theelectricityneedsofdatacentersaredetermined
primarilybythethreeconstituenthardwarecategories.
Eachcategory’sproportionofenergyconsumptioncanvarydependingonthedatacenter’sage,configuration,type,
andfunction[10,11,12,13].Thethreemaincategoriesandtheirenergyconsumption[2,13,14]are:
?ITequipment,typicallycomposing40%–50%ofdata
centerenergyconsumption,encompassesthefollowingfoundationalhardwareunits:
-Servers,whicharetheworkhorses,responsiblefordataprocessingandcomputationaltasks
-Storagesystems,whichincludebothtraditional
harddiskdrives(HDDs)andthefaster,more
energy-efficientsolid-statedrives(SSDs),crucialfordataretention
-Networkinfrastructure,whichcomprisesswitches,routers,andothercomponents,ensuringseamlessdatatransferandconnectivity
?Coolingsystems,typicallycomposing30%–40%ofdatacenterenergyconsumption,arecriticaltomaintaining
anoptimaltemperaturewithindatacenterstopreventhardwaremalfunctionandensurelongevity.WhiledatacentershistoricallyusedtraditionalHVAC,advanced
coolingtechnologiesindatacentershavetransitionedtowardssystemsthatarespecializedfordatacenter
use.PleaserefertothesectionEnergyEfficiencyandLoadManagementbelowformoredetails.
?Auxiliarycomponents,typicallycomposing10%–30%ofdatacenterenergyconsumption,areusedforvarious
operationalneedsandincludeuninterruptiblepowersupplies,securitysystems,andlighting.
Assessingdatacenterenergyefficiencyiscrucialtogauginghoweffectivelytheyuseelectricity.Theseassessmentshelptoidentifytrends,driveimprovements,andsetbenchmarksforelectricityusage;andplayakeyroleinoperational
strategy[15,16].
10|PoweringIntelligenceMay2024
AIANDDATACENTERPOWER
CONSUMPTIONINSIGHTS
ImmenseVolumesofDataareBeingProcessedDaily
Datacenters’worldwideelectricityusein2022totaled300millionmegawatt-hours(MMWh),or1.2%ofallload,a45%increasefrom2015[17].IntheUnitedStatesin2023,datacentersaccountedforabout4%oftotalelectricitycon-
sumptionor150MMWh,equivalenttotheaverageannualconsumptionof14millionhouseholds[9,18].
Since2017,annualdatavolumeshavesoared,triplingtoaround4,750exabytes(anexabytebeingabillion
gigabytes)by2022,showcasingtheimmensevolumeof
informationbeingprocessedandtransmittedgloballyeveryday[19].In2022,thedailygenerationofdata—including
captured,copied,orconsumed—reachedapproximately
13exabytes,asurgepartlyattributabletotheburgeon-
ingimpactofAImodels[17].Concurrently,in2022,globaldatatransmissionnetworkenergyusewasreportedto
bearound260–360MMWh,roughlyequaltodatacenterpoweruse[17,20].Figure4illustratesthedramaticriseinglobalconsumerIPtraffic.
Datacentersarefacingasignificantchallengewithinternettrafficgrowingnearly12-foldinthepastdecade,atrend
paralleledbyincreasingAI-relatedworkloaddemands[19].ThehistoricalprecedentisshowcasedinFigure5,which
contraststheU.S.datastoragesupplyversusestimated
demandfrom2009to2020,underscoringagrowingdeficitandtheneedtoaddressthesetrends[22].
Despitetheimmensegrowthinnetworktrafficanddatageneration,loadgrowthhasbeenmuchslowerduetoef-ficiencygainsandconsolidation.
DatavolumeofglobalconsumerIPtrafficfrom2017to2022
Datavolumeinexabytespermonth
156201254319
396
400
300
200
100
0
122
201720182019202020212022
Figure4.TrendsinglobalconsumerIPtraffic,2017–2022[21]
45,000
StorageCapacityinExabytes
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000
0
Demand
lSupply
200920102011201220132014201520162017201820192020
Figure5.U.S.datastoragesupplyvs.demand,2009–2020[22,23]
11|PoweringIntelligenceMay2024
HistoryofEnergyEfficiencyintheData
CenterIndustry
Overthelast25years,U.S.datacenterloadgrowth,asshowninFigure6,hasexperiencedthreephases:
1.Energyconsumptiongrewintheearly2000sdrivenbytherapidexpansionofinternetinfrastructureandthedot-comboom[24].
2.From2010–2020,electricityconsumptionstabilizedasdatacenterexpansionwasoffsetbyequallyrapidim-
provementsinenergyefficiencyachievedboththroughimprovementsatindividualfacilitiesandthroughthe
transitionfromsmalldatacenterstomoreefficientcloudfacilities[25,26].
3.Recentloadgrowthindatacentersisdrivenmainlyby
theexpandingdemandforcloudservices,bigdataana-lytics,andAItechnologies—whichrequiresignificant
computationalresources—andaslowingofefficiencygains[27].
Efficiencygainsinindividualdatacentershavebeenledbyadvancementsinserverefficiency,whichhavebeen
significant,leadingtoreducedpowerconsumptionperunit
ofcomputingpower[28].Powerandcoolingequipment,requiredtooperatetheITcomponents,hasalsoimproveditsefficiency.PowerUsageEffectiveness(PUE)andData
CenterInfrastructureEfficiency(DCIE),keyefficiency
metricsinthedatacenterindustry,aredefinedintheboxonthenex
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 按揭手房買賣協(xié)議書
- 灰土擠密樁施工承包合同
- 2025年南寧貨運從業(yè)資格試題答案大全
- 2025年青海貨運從業(yè)資格試題題庫
- 2025年鶴崗b2貨運資格證模擬考試
- 電工承包簡單合同(2篇)
- 2024-2025學(xué)年四年級語文上冊第二單元6天安門廣場教案1蘇教版
- 浙教版數(shù)學(xué)七年級上冊《2.1 有理數(shù)的加法》聽評課記錄
- 七年級英語上冊 Module 8 Choosing presents Unit 3 Language in use說課稿 (新版)外研版
- 2024-2025學(xué)年高中物理課時分層作業(yè)2庫侖定律含解析教科版選修3-1
- 原子結(jié)構(gòu) 教學(xué)設(shè)計 高二化學(xué)人教版(2019)選擇性必修2
- 2024年2孩離婚協(xié)議書模板2024電子版
- 《西游記》簡介課件
- 浪潮銷售在線測評題
- 外研版小學(xué)英語1-6年級全冊單詞表
- 安全閥校驗標(biāo)準(zhǔn)
- 耳穴壓豆課件
- 建筑制圖與識圖教學(xué)課件:第八章 結(jié)構(gòu)施工圖
- (高清版)DB15∕T 3585-2024 高標(biāo)準(zhǔn)農(nóng)田施工質(zhì)量評定規(guī)程
- 試油(氣)HSE作業(yè)指導(dǎo)書
- 中醫(yī)藥三方合作協(xié)議書范本
評論
0/150
提交評論