數(shù)學(xué)分析二冊答案冪級數(shù)_第1頁
數(shù)學(xué)分析二冊答案冪級數(shù)_第2頁
數(shù)學(xué)分析二冊答案冪級數(shù)_第3頁
數(shù)學(xué)分析二冊答案冪級數(shù)_第4頁
數(shù)學(xué)分析二冊答案冪級數(shù)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

§冪級數(shù)的收斂半徑與收斂域1.求下列各冪級數(shù)的收斂域:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0;(7)SKIPIF1<0;(8)SKIPIF1<0;(9)SKIPIF1<0;(10)SKIPIF1<0;(11)SKIPIF1<0;(12)SKIPIF1<0;(13)SKIPIF1<0;(14)SKIPIF1<0;(15)SKIPIF1<0;(16)SKIPIF1<0.解(1)由SKIPIF1<0,故收斂半徑SKIPIF1<0,收斂域?yàn)镾KIPIF1<0.(2)由SKIPIF1<0,故收斂半徑SKIPIF1<0.在SKIPIF1<0,級數(shù)為SKIPIF1<0,發(fā)散;在SKIPIF1<0,級數(shù)為SKIPIF1<0,由交錯級數(shù)的Leibniz判別法,知其收斂,因而收斂域?yàn)镾KIPIF1<0.(3)SKIPIF1<0,所以收斂半徑SKIPIF1<0.由于SKIPIF1<0,故在SKIPIF1<0級數(shù)發(fā)散,因此收斂域?yàn)镾KIPIF1<0.(4)由SKIPIF1<0,知收斂半徑SKIPIF1<0.在SKIPIF1<0,級數(shù)為SKIPIF1<0絕對收斂,故收斂域?yàn)镾KIPIF1<0.(5)由SKIPIF1<0,故收斂半徑SKIPIF1<0.在SKIPIF1<0,級數(shù)SKIPIF1<0,將其奇偶項(xiàng)分開,拆成兩個部分,分別為SKIPIF1<0和SKIPIF1<0,前一項(xiàng)級數(shù)發(fā)散,后一項(xiàng)級數(shù)收斂,因此級數(shù)SKIPIF1<0發(fā)散;同樣,SKIPIF1<0時,級數(shù)為SKIPIF1<0,也可拆成兩部分,前一部分為SKIPIF1<0,另一部分SKIPIF1<0,前者發(fā)散,后者絕對收斂,因此級數(shù)SKIPIF1<0發(fā)散,所以收斂區(qū)域是SKIPIF1<0.(6)SKIPIF1<0,所以級數(shù)的收斂半徑是SKIPIF1<0.當(dāng)SKIPIF1<0時,級數(shù)為SKIPIF1<0發(fā)散;當(dāng)SKIPIF1<0時,級數(shù)為SKIPIF1<0收斂.因此,收斂域?yàn)镾KIPIF1<0即SKIPIF1<0.(7)SKIPIF1<0,所以收斂半徑SKIPIF1<0.當(dāng)SKIPIF1<0時,級數(shù)為SKIPIF1<0,由于SKIPIF1<0,故由Raabe判別法,知級數(shù)發(fā)散;當(dāng)SKIPIF1<0時,級數(shù)為SKIPIF1<0(實(shí)際上,由其絕對收斂立知其收斂),這是交錯級數(shù),由于SKIPIF1<0,故SKIPIF1<0單調(diào)下降,且由SKIPIF1<0(用數(shù)學(xué)歸納法證之)及夾迫性知SKIPIF1<0,由Leibniz判別法,知SKIPIF1<0收斂,所以收斂域?yàn)镾KIPIF1<0.(8)SKIPIF1<0,所以收斂半徑SKIPIF1<0.由于SKIPIF1<0,故級數(shù)在SKIPIF1<0發(fā)散,因而收斂域?yàn)镾KIPIF1<0.(9)SKIPIF1<0,所以SKIPIF1<0.在SKIPIF1<0,級數(shù)為SKIPIF1<0,由Leibniz判別法,知其收斂;在SKIPIF1<0,級數(shù)為SKIPIF1<0發(fā)散,故收斂域SKIPIF1<0.(10)SKIPIF1<0,所以SKIPIF1<0.在SKIPIF1<0,由于SKIPIF1<0,即級數(shù)SKIPIF1<0一般項(xiàng)SKIPIF1<0當(dāng)nSKIPIF1<0時不趨于0,因此級數(shù)發(fā)散,故收斂域SKIPIF1<0.(11)SKIPIF1<0,因此SKIPIF1<0.在SKIPIF1<0,級數(shù)為SKIPIF1<0,因?yàn)榧墧?shù)一般項(xiàng)的絕對值為SKIPIF1<0對一切SKIPIF1<0成立,所以SKIPIF1<0,即級數(shù)SKIPIF1<0發(fā)散,因此收斂域?yàn)镾KIPIF1<0.(12)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.而在SKIPIF1<0,由于SKIPIF1<0,故級數(shù)在SKIPIF1<0均發(fā)散,因而收斂區(qū)間為SKIPIF1<0.(13)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.又在SKIPIF1<0,顯然級數(shù)SKIPIF1<0均發(fā)散,故收斂域?yàn)镾KIPIF1<0.(14)由于SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0均絕對收斂,因而收斂半徑SKIPIF1<0,收斂域SKIPIF1<0.(15)因?yàn)镾KIPIF1<0(SKIPIF1<0),所以SKIPIF1<0,收斂域?yàn)镾KIPIF1<0.(16)SKIPIF1<0,所以SKIPIF1<0.在SKIPIF1<0,級數(shù)變?yōu)镾KIPIF1<0,故當(dāng)SKIPIF1<0時都收斂;SKIPIF1<0時,SKIPIF1<0收斂,而SKIPIF1<0發(fā)散,SKIPIF1<0時一般項(xiàng)不趨于0,均發(fā)散.因此,當(dāng)SKIPIF1<0時,收斂域SKIPIF1<0;SKIPIF1<0時,收斂域?yàn)镾KIPIF1<0;而當(dāng)SKIPIF1<0時,收斂域?yàn)镾KIPIF1<0.2.設(shè)冪級數(shù)SKIPIF1<0的收斂半徑為SKIPIF1<0,SKIPIF1<0的收斂半徑為SKIPIF1<0,討論下列級數(shù)的收斂半徑:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.解(1)由題設(shè)SKIPIF1<0,所以SKIPIF1<0,故當(dāng)SKIPIF1<0,即SKIPIF1<0時,級數(shù)SKIPIF1<0絕對收斂,而當(dāng)SKIPIF1<0,即SKIPIF1<0時,級數(shù)SKIPIF1<0發(fā)散,因此級數(shù)SKIPIF1<0的收斂半徑為SKIPIF1<0.(2)收斂半徑必SKIPIF1<0,而不定,需給出SKIPIF1<0,SKIPIF1<0的具體表達(dá)式才可確定,可以舉出例子.(3)SKIPIF1<0,所以收斂半徑為SKIPIF1<0,只有當(dāng)SKIPIF1<0中一個為0,另一個為SKIPIF1<0時,不能確定,需看具體SKIPIF1<0,SKIPIF1<0來確定,可以是SKIPIF1<0中任一數(shù).3.設(shè)SKIPIF1<0,求證:當(dāng)SKIPIF1<0時,有(1)SKIPIF1<0收斂;(2)SKIPIF1<0.證明(1)SKIPIF1<0=SKIPIF1<0,而由于SKIPIF1<0,故數(shù)列SKIPIF1<0單調(diào)遞減趨于0,級數(shù)SKIPIF1<0的部分和數(shù)列SKIPIF1<0有界,由Dirichlet判別法,級數(shù)SKIPIF1<0收斂.(2)設(shè)SKIPIF1<0的部分和為SKIPIF1<0,則由Abel變換,有SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以,SKIPIF1<0.§13.2冪級數(shù)的性質(zhì)1.設(shè)SKIPIF1<0當(dāng)SKIPIF1<0時收斂,那么當(dāng)SKIPIF1<0收斂時有SKIPIF1<0,不論SKIPIF1<0當(dāng)SKIPIF1<0時是否收斂.證明由于冪級數(shù)SKIPIF1<0的收斂半徑至少不小于SKIPIF1<0,且該冪級數(shù)在SKIPIF1<0收斂,因而該冪級數(shù)在SKIPIF1<0一致收斂(Abel第二定理),因此該冪級數(shù)的和函數(shù)SKIPIF1<0在SKIPIF1<0連續(xù),即SKIPIF1<0.又SKIPIF1<0,由于SKIPIF1<0當(dāng)SKIPIF1<0時收斂,故可逐項(xiàng)積分,即SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0取極限即有SKIPIF1<0.2.利用上題證明SKIPIF1<0.證明SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,而級數(shù)SKIPIF1<0是收斂的,利用上題結(jié)論,就有SKIPIF1<0.3.用逐項(xiàng)微分或逐項(xiàng)積分求下列級數(shù)的和:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0;(7)SKIPIF1<0;(8)SKIPIF1<0;(9)SKIPIF1<0;(10)SKIPIF1<0.解(1)因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,且當(dāng)SKIPIF1<0時,級數(shù)SKIPIF1<0收斂,由Abel第二定理,有SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0,逐項(xiàng)積分,有SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0.(3)設(shè)SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0.(4)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(5)設(shè)SKIPIF1<0,SKIPIF1<0.由于SKIPIF1<0,所以,SKIPIF1<0,故SKIPIF1<0.(6)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(在SKIPIF1<0理解為極限值).(7)令SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0(在SKIPIF1<0理解為極限值).(8)SKIPIF1<0,收斂半徑SKIPIF1<0,在SKIPIF1<0,有SKIPIF1<0,由于SKIPIF1<0,故級數(shù)發(fā)散.可得SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(9)設(shè)SKIPIF1<0,則有SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.(10)設(shè)SKIPIF1<0,則有(逐項(xiàng)積分),SKIPIF1<0所以,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.4.求下列級數(shù)的和:(1)SKIPIF1<0;(2)SKIPIF1<0.解(1)考慮級數(shù)SKIPIF1<0,SKIPIF1<0.由于SKIPIF1<0,逐項(xiàng)積分,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0.故有SKIPIF1<0.(2)設(shè)SKIPIF1<0,則級數(shù)在SKIPIF1<0絕對收斂,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因此,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0.5.證明:(1)SKIPIF1<0滿足方程SKIPIF1<0;(2)SKIPIF1<0滿足方程SKIPIF1<0.解(1)對級數(shù)SKIPIF1<0,由SKIPIF1<0,故收斂半徑SKIPIF1<0,收斂域?yàn)镾KIPIF1<0,而采取用逐項(xiàng)求導(dǎo)得,SKIPIF1<0,即SKIPIF1<0滿足方程SKIPIF1<0.(2)級數(shù)SKIPIF1<0收斂域?yàn)镾KIPIF1<0,設(shè)SKIPIF1<0,通過逐項(xiàng)求導(dǎo)得,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,SKIPIF1<0即SKIPIF1<0滿足方程SKIPIF1<0.6.設(shè)SKIPIF1<0是冪級數(shù)SKIPIF1<0在SKIPIF1<0上的和函數(shù),若SKIPIF1<0為奇函數(shù),則級數(shù)中僅出現(xiàn)奇次冪的項(xiàng);若SKIPIF1<0為偶函數(shù),則級數(shù)中僅出現(xiàn)偶次冪的項(xiàng).證明由于SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,由SKIPIF1<0是奇函數(shù),即SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,有SKIPIF1<0,故當(dāng)SKIPIF1<0為偶數(shù)時SKIPIF1<0,即級數(shù)中偶次冪系數(shù)均為0,因此級數(shù)中僅出現(xiàn)奇次冪的項(xiàng).同樣,若SKIPIF1<0為偶函數(shù),即SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,有SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時,有SKIPIF1<0,即級數(shù)中奇次冪的系數(shù)均為0,因此級數(shù)中僅出現(xiàn)偶次冪的項(xiàng).7.設(shè)SKIPIF1<0.求證:(1)SKIPIF1<0在SKIPIF1<0連續(xù),SKIPIF1<0在SKIPIF1<0內(nèi)連續(xù);(2)SKIPIF1<0在點(diǎn)SKIPIF1<0可導(dǎo);(3)SKIPIF1<0;(4)SKIPIF1<0在點(diǎn)SKIPIF1<0不可導(dǎo);證明(1)由于SKIPIF1<0,而級數(shù)SKIPIF1<0收斂,由M判別法,知級數(shù)SKIPIF1<0在SKIPIF1<0一致收斂,而級數(shù)的每一項(xiàng)為冪函數(shù)在SKIPIF1<0連續(xù),故和函數(shù)SKIPIF1<0在SKIPIF1<0連續(xù).又級數(shù)SKIPIF1<0的收斂半徑為SKIPIF1<0,因此在SKIPIF1<0內(nèi),其和函數(shù)SKIPIF1<0連續(xù).(2)冪級數(shù)SKIPIF1<0在SKIPIF1<0成為SKIPIF1<0,由Leibniz判別法,知級數(shù)收斂,由Abel第二定理,冪級數(shù)在SKIPIF1<0一致收斂,因而其和函數(shù)SKIPIF1<0在SKIPIF1<0右連續(xù),因此SKIPIF1<0存在,且SKIPIF1<0.(3)SKIPIF1<0.(4)因?yàn)镾KIPIF1<0SKIPIF1<0,故SKIPIF1<0在點(diǎn)SKIPIF1<0不可導(dǎo).§1.利用基本初等函數(shù)的展式,將下列函數(shù)展開為Maclaurin級數(shù),并說明收斂區(qū)間.(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0;(7)SKIPIF1<0;(8)SKIPIF1<0;(9)SKIPIF1<0;(10)SKIPIF1<0;(11)SKIPIF1<0;(12)SKIPIF1<0;(13)SKIPIF1<0;(14)SKIPIF1<0.解(1)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0).(2)SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(3)SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(4)SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(5)SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(6)SKIPIF1<0SKIPIF1<0(SKIPIF1<0)SKIPIF1<0,SKIPIF1<0.(7)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0,SKIPIF1<0.(8)SKIPIF1<0SKIPIF1<0(SKIPIF1<0)SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.(9)SKIPIF1<0SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)SKIPIF1<0,SKIPIF1<0.(10)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0,由于SKIPIF1<0,用Raabe判別法知右端級數(shù)收斂,因而收斂區(qū)間為SKIPIF1<0.(11)SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(12)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(13)SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(14)SKIPIF1<0SKIPIF1<0,SKIPIF1<0.2.利用冪級數(shù)相乘求下列函數(shù)的Maclaurin展開式:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.解(1)SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(3)SKIPIF1<0SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論