河南省安陽市第三中學(xué)2024屆中考數(shù)學(xué)猜題卷含解析_第1頁
河南省安陽市第三中學(xué)2024屆中考數(shù)學(xué)猜題卷含解析_第2頁
河南省安陽市第三中學(xué)2024屆中考數(shù)學(xué)猜題卷含解析_第3頁
河南省安陽市第三中學(xué)2024屆中考數(shù)學(xué)猜題卷含解析_第4頁
河南省安陽市第三中學(xué)2024屆中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省安陽市第三中學(xué)2024屆中考數(shù)學(xué)猜題卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.將拋物線y=x2﹣6x+21向左平移2個(gè)單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+32.定義運(yùn)算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個(gè)根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m3.罰球是籃球比賽中得分的一個(gè)組成部分,罰球命中率的高低對(duì)籃球比賽的結(jié)果影響很大.如圖是對(duì)某球員罰球訓(xùn)練時(shí)命中情況的統(tǒng)計(jì):下面三個(gè)推斷:①當(dāng)罰球次數(shù)是500時(shí),該球員命中次數(shù)是411,所以“罰球命中”的概率是0.822;②隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.812附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③4.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點(diǎn),點(diǎn)C在第一象限,AC⊥AB,且AC=AB,則點(diǎn)C的坐標(biāo)為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)5.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.726.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.7.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為()A. B. C. D.8.-sin60°的倒數(shù)為()A.-2 B. C.- D.-9.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點(diǎn)B恰好落在AC邊上的點(diǎn)E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°10.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.化簡:_____________.12.如圖,在四個(gè)小正方體搭成的幾何體中,每個(gè)小正方體的棱長都是1,則該幾何體的三視圖的面積之和是_____.13.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點(diǎn)A(﹣2,2),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+14.21世紀(jì)納米技術(shù)將被廣泛應(yīng)用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學(xué)記數(shù)法表示為_______米.15.如圖,直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,點(diǎn)C在x軸的正半軸上,若∠ACB=90°,則點(diǎn)C的坐標(biāo)為______.16.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O的直徑,點(diǎn)D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點(diǎn)D,已知點(diǎn)E是半圓弧AB上的動(dòng)點(diǎn),點(diǎn)F是射線DC上的動(dòng)點(diǎn),連接DE、AE,DE與AB交于點(diǎn)P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當(dāng)∠DAE=時(shí),四邊形ADFP是菱形;②當(dāng)∠DAE=時(shí),四邊形BFDP是正方形.18.(8分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對(duì)角線AC上時(shí),如圖所示,半圓與AB的交點(diǎn)為M,求AM的長;(2)半圓與直線CD相切時(shí),切點(diǎn)為N,與線段AD的交點(diǎn)為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí),設(shè)此交點(diǎn)與點(diǎn)C的距離為d,直接寫出d的取值范圍.19.(8分)計(jì)算:.20.(8分)如圖①,二次函數(shù)的拋物線的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).(1)求這個(gè)拋物線的解析式;(2)如圖②,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長最?。咳舸嬖?,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.21.(8分)興發(fā)服裝店老板用4500元購進(jìn)一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進(jìn)第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進(jìn)價(jià)比第一批多了9元.第一批該款式T恤衫每件進(jìn)價(jià)是多少元?老板以每件120元的價(jià)格銷售該款式T恤衫,當(dāng)?shù)诙鶷恤衫售出時(shí),出現(xiàn)了滯銷,于是決定降價(jià)促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價(jià)至少要多少元?(利潤=售價(jià)﹣進(jìn)價(jià))22.(10分)如圖,在平面直角坐標(biāo)系xOy中,直線與函數(shù)的圖象的兩個(gè)交點(diǎn)分別為A(1,5),B.(1)求,的值;(2)過點(diǎn)P(n,0)作x軸的垂線,與直線和函數(shù)的圖象的交點(diǎn)分別為點(diǎn)M,N,當(dāng)點(diǎn)M在點(diǎn)N下方時(shí),寫出n的取值范圍.23.(12分)如圖,在梯形中,,,,,點(diǎn)為邊上一動(dòng)點(diǎn),作⊥,垂足在邊上,以點(diǎn)為圓心,為半徑畫圓,交射線于點(diǎn).(1)當(dāng)圓過點(diǎn)時(shí),求圓的半徑;(2)分別聯(lián)結(jié)和,當(dāng)時(shí),以點(diǎn)為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點(diǎn),試通過計(jì)算說明線段和的比值為定值,并求出次定值.24.隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.(1)本次調(diào)查的學(xué)生共有人,估計(jì)該校1200名學(xué)生中“不了解”的人數(shù)是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請(qǐng)利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

直接利用配方法將原式變形,進(jìn)而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個(gè)單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關(guān)鍵.2、A【解析】【分析】由根與系數(shù)的關(guān)系可得a+b=-1然后根據(jù)所給的新定義運(yùn)算a?b=2ab對(duì)式子(a+1)?a-(b+1)?b用新定義運(yùn)算展開整理后代入進(jìn)行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個(gè)根,∴a+b=-1,∵定義運(yùn)算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點(diǎn)睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,新定義運(yùn)算等,理解并能運(yùn)用新定義運(yùn)算是解題的關(guān)鍵.3、B【解析】

根據(jù)圖形和各個(gè)小題的說法可以判斷是否正確,從而解答本題【詳解】當(dāng)罰球次數(shù)是500時(shí),該球員命中次數(shù)是411,所以此時(shí)“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯(cuò)誤;隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.2附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯(cuò)誤.故選:B.【點(diǎn)睛】此題考查了頻數(shù)和頻率的意義,解題的關(guān)鍵在于利用頻率估計(jì)概率.4、D【解析】

過點(diǎn)C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點(diǎn)的坐標(biāo)特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點(diǎn)坐標(biāo)可求.【詳解】如圖,過點(diǎn)C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點(diǎn),∴當(dāng)x=0時(shí),y=2,則B(0,2);當(dāng)y=0時(shí),x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點(diǎn)睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應(yīng)用,熟練掌握相關(guān)知識(shí)點(diǎn)是解答的關(guān)鍵.5、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.6、C【解析】

由平面圖形的折疊及正方形的展開圖結(jié)合本題選項(xiàng),一一求證解題.【詳解】解:A、B、D都是正方體的展開圖,故選項(xiàng)錯(cuò)誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【點(diǎn)睛】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題7、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長度問題一般需用到勾股定理來解決,常作垂線8、D【解析】分析:根據(jù)乘積為1的兩個(gè)數(shù)互為倒數(shù),求出它的倒數(shù)即可.詳解:的倒數(shù)是.故選D.點(diǎn)睛:考查特殊角的三角函數(shù)和倒數(shù)的定義,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.9、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.10、D【解析】

根據(jù)合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則進(jìn)行計(jì)算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯(cuò)誤;B:x8÷x2=x8-2=x6,故B錯(cuò)誤;C:=,故C錯(cuò)誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則.其中指數(shù)為分?jǐn)?shù)的情況在初中階段很少出現(xiàn).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù)分式的運(yùn)算法則即可求解.【詳解】原式=.故答案為:.【點(diǎn)睛】此題主要考查分式的運(yùn)算,解題的關(guān)鍵是熟知分式的運(yùn)算法則.12、1【解析】

根據(jù)三視圖的定義求解即可.【詳解】主視圖是第一層是三個(gè)小正方形,第二層右邊一個(gè)小正方形,主視圖的面積是4,俯視圖是三個(gè)小正方形,俯視圖的面積是3,左視圖是下邊一個(gè)小正方形,第二層一個(gè)小正方形,左視圖的面積是2,幾何體的三視圖的面積之和是4+3+2=1,故答案為1.【點(diǎn)睛】本題考查了簡單組合體的三視圖,利用三視圖的定義是解題關(guān)鍵.13、A【解析】

根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征由A點(diǎn)坐標(biāo)為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對(duì)稱的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點(diǎn)B的坐標(biāo)可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點(diǎn)A坐標(biāo)為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點(diǎn)B和點(diǎn)B′關(guān)于直線l對(duì)稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點(diǎn)B′的坐標(biāo)為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點(diǎn)睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等腰直角三角形的性質(zhì)和軸對(duì)稱的性質(zhì)及會(huì)用求根公式法解一元二次方程.14、1.2×10﹣1.【解析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點(diǎn)睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.15、(2,0)【解析】

根據(jù)直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,可得AB=2AO=4,再根據(jù)Rt△ABC中,OC=AB=2,即可得到點(diǎn)C的坐標(biāo)【詳解】如圖所示,∵直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵點(diǎn)C在x軸的正半軸上,∴C(2,0),故答案為(2,0).【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點(diǎn)問題,解決問題的關(guān)鍵是利用直角三角形斜邊上中線的性質(zhì)得到OC的長.16、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點(diǎn)睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個(gè)代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.三、解答題(共8題,共72分)17、(1)詳見解析;(2)①67.5°;②90°.【解析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質(zhì),可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點(diǎn)D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點(diǎn)G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時(shí)點(diǎn)P與點(diǎn)O重合,∴此時(shí)DE是直徑,∴∠EAD=90°,故答案為:90°.【點(diǎn)睛】本題考查菱形的判定與性質(zhì)、切線的性質(zhì)、正方形的判定,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用菱形的性質(zhì)和正方形的性質(zhì)解答.18、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,則四邊形DGON為矩形,進(jìn)而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進(jìn)而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進(jìn)而可得出CN的長度,畫出點(diǎn)B′在直線CD上的圖形,在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),利用勾股定理可求出B′D的長度進(jìn)而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí)d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當(dāng)點(diǎn)B′在直線CD上時(shí),如圖4所示,在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當(dāng)點(diǎn)B′在點(diǎn)D右邊時(shí),半圓交直線CD于點(diǎn)D、B′.∴當(dāng)半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí),4-≤d<4或d=4+.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關(guān)鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結(jié)合求出d的取值范圍.19、【解析】

根據(jù)絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)、特殊角的三角函數(shù)值、負(fù)整數(shù)指數(shù)冪的性質(zhì)、二次根式的性質(zhì)及乘方的定義分別計(jì)算后,再合并即可【詳解】原式.【點(diǎn)睛】此題主要考查了實(shí)數(shù)運(yùn)算,正確化簡各數(shù)是解題關(guān)鍵.20、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負(fù)半軸上取一點(diǎn)I,使得點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,在x軸上取一點(diǎn)H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點(diǎn)的一次函數(shù)解析式為:y=kx+b(k≠0),∵點(diǎn)E在拋物線上且點(diǎn)E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點(diǎn)E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點(diǎn)A(1,0)、B(-3,0)、D(0,3),所以頂點(diǎn)C(-1,4)∴拋物線的對(duì)稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點(diǎn)D與點(diǎn)E關(guān)于PQ對(duì)稱,GD=GE……………②分別將點(diǎn)A(1,0)、點(diǎn)E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點(diǎn)的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時(shí),y=1∴點(diǎn)F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,∴點(diǎn)I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個(gè)定值,∴只要使DG+GH+HI最小即可……6分由圖形的對(duì)稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點(diǎn)的函數(shù)解析式為:y=k分別將點(diǎn)E(-2,3)、點(diǎn)I(0,-1)代入y=k-2k1過I、E兩點(diǎn)的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時(shí),y=1;當(dāng)y=0時(shí),x=-12∴點(diǎn)G坐標(biāo)為(-1,1),點(diǎn)H坐標(biāo)為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點(diǎn)A(1,0),點(diǎn)C(-1,4),設(shè)過A(1,0),點(diǎn)C(-1,4)兩點(diǎn)的函數(shù)解析式為:,得:k2解得:k2過A、C兩點(diǎn)的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時(shí),y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時(shí),因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時(shí),CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時(shí),CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點(diǎn)的三角形與△AOM相似,點(diǎn)P的坐標(biāo)為(-4,0)12分【解析】(1)直接利用三點(diǎn)式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應(yīng)將邊長進(jìn)行轉(zhuǎn)換,利用對(duì)稱性,要使四邊形DFHG的周長最小,由于DF是一個(gè)定值,只要使DG+GH+HI最小即可,由圖形的對(duì)稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時(shí),因此可分兩種情況討論,①當(dāng)∠CMP=90°時(shí),CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當(dāng)∠PCM=90°時(shí),CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點(diǎn)的三角形與△AOM相似的P的坐標(biāo)(-4,0)21、(1)第一批T恤衫每件的進(jìn)價(jià)是90元;(2)剩余的T恤衫每件售價(jià)至少要80元.【解析】

(1)設(shè)第一批T恤衫每件進(jìn)價(jià)是x元,則第二批每件進(jìn)價(jià)是(x+9)元,再根據(jù)等量關(guān)系:第二批進(jìn)的件數(shù)=第一批進(jìn)的件數(shù)可得方程;(2)設(shè)剩余的T恤衫每件售價(jià)y元,由利潤=售價(jià)﹣進(jìn)價(jià),根據(jù)第二批的銷售利潤不低于650元,可列不等式求解.【詳解】解:(1)設(shè)第一批T恤衫每件進(jìn)價(jià)是x元,由題意,得,解得x=90經(jīng)檢驗(yàn)x=90是分式方程的解,符合題意.答:第一批T恤衫每件的進(jìn)價(jià)是90元.(2)設(shè)剩余的T恤衫每件售價(jià)y元.由(1)知,第二批購進(jìn)=50件.由題意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售價(jià)至少要80元.22、(1),;(2)0<n<1或者n>1.【解析】

(1)利用待定系數(shù)法即可解決問題;(2)利用圖象法即可解決問題;【詳解】解:(1)∵A(1,1)在直線上,∴,∵A(1,1)在的圖象上,∴.(2)觀察圖象可知,滿足條件的n的值為:0<n<1或者n>1.【點(diǎn)睛】此題考查待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,解題關(guān)鍵在于利用數(shù)形結(jié)合的思想求解.23、(1)x=1(2)(1)【解析】

(1)作AM⊥BC、連接AP,由等腰梯形性質(zhì)知BM=4、AM=1,據(jù)此知tanB=tanC=,從而可設(shè)PH=1k,則CH=4k、PC=5k,再表示出PA的長,根據(jù)PA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論