2022年湖北省宜昌市(初三學業(yè)水平考試)中考數(shù)學真題試卷含詳解_第1頁
2022年湖北省宜昌市(初三學業(yè)水平考試)中考數(shù)學真題試卷含詳解_第2頁
2022年湖北省宜昌市(初三學業(yè)水平考試)中考數(shù)學真題試卷含詳解_第3頁
2022年湖北省宜昌市(初三學業(yè)水平考試)中考數(shù)學真題試卷含詳解_第4頁
2022年湖北省宜昌市(初三學業(yè)水平考試)中考數(shù)學真題試卷含詳解_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年湖北省宜昌市初中學業(yè)水平考試數(shù)學試卷

一、選擇題(下列各題中,只有一個選項是符合題目要求的,請在答題卡上指定的位置填涂符合要

求的選項前面的字母代號,每題3分,計33分)

1.下列說法正確的個數(shù)是()

①一2022的相反數(shù)是2022;②一2022的絕對值是2022;③」一的倒數(shù)是2022.

2022

A.3B.2C.1D.0

2.將四個數(shù)字看作一個圖形,則下列四個圖形中,是中心對稱圖形的是()

cd

人6666B999966696699

3.我市圍繞創(chuàng)建全國文明典范城市、傳承弘揚屈原文化,組織開展了“喜迎二十大、永遠跟黨走、奮進新征程”

等系列活動.在2022年“書香宜昌?全民讀書月”暨“首屆屈原文化月”活動中,100多個社區(qū)圖書室、山區(qū)學

校、農(nóng)家書屋、“護苗”工作站共獲贈了價值100萬元的紅色經(jīng)典讀物、屈原文化優(yōu)秀讀物和智能書柜.“100

萬”用科學記數(shù)法表示為()

A.lOOxlO4B.IxlO5C.IxlO6D.lxIO,

4.下列運算第送的是()

A./.13=16B./、2=刀6C.(x3)2=^6D.

5.已知經(jīng)過閉合電路的電流/(單位:A)與電路的電阻A(單位:Q)是反比例函數(shù)關(guān)系.根據(jù)下表判斷〃和

8的大小關(guān)系為()

//A5ab1

R/Q2030405060708090100

A.a>hB.a>bC.a<bD.a<h

6.如圖,在qABC中,分別以點B和點C為圓心,大于長為半徑畫弧,兩弧相交于點M,N.作直線

2

MN,交AC于點£>,交于點E,連接80.若他=7,AC=12,BC=6,則△A3。的周長為()

A

7.如圖,四邊形A3CD內(nèi)接于。,連接OB,OD,8。,若NC=110。,則/0%)=

C

A.15°B.20°C.25°D.30°

8.五一小長假,小華和家人到公園游玩.湖邊有大小兩種游船.小華發(fā)現(xiàn)1艘大船與2艘小船一次共可以滿載游客

32人,2艘大船與1艘小船一次共可以滿載游客46人.則1艘大船與1艘小船一次共可以滿載游客的人數(shù)為

9.如圖是小強散步過程中所走的路程s(單位:m)與步行時間,(單位:min)的函數(shù)圖象.其中有一時間段

小強是勻速步行的.則這一時間段小強的步行速度為()

70//min

A.50m/minB.40m/minC.-----D.20m/min

7

10.如圖是一個教室平面示意圖,我們把小剛的座位“第1列第3排”記為(1,3).若小麗的座位為(3,2),以下四

個座位中,與小麗相鄰且能比較方便地討論交流的同學的座位是()

?口呂

4口

S日

4

H呂

J口

1呂

R只

IFF

、.

A.(1,3)B.(3,4)C.(4,2)D.(2,4)

11.某校團支部組織部分共青團員開展學雷鋒志愿者服務(wù)活動,每個志愿者都可以從以下三個項目中任選一項參

加:①敬老院做義工;②文化廣場地面保潔;③路口文明崗值勤.則小明和小慧選擇參加同一項目的概率是

()

二、填空題(將答案寫在答題卡上指定的位置.每題3分,計12分)

12.中國是世界上首先使用負數(shù)的國家.兩千多年前戰(zhàn)國時期李悝所著的《法經(jīng)》中已出現(xiàn)使用負數(shù)的實例.《九

章算術(shù)》的“方程”一章,在世界數(shù)學史上首次正式引入負數(shù)及其加減法運算法則,并給出名為“正負術(shù)”的算

法.請計算以下涉及“負數(shù)”的式子的值:-1-(-3)2=.

13.如圖,點A,B,C都在方格紙的格點上,ABC繞點A順時針方向旋轉(zhuǎn)90°后得到.AB'C',則點8運動

的路徑88'的長為

14.如圖,C島在A島的北偏東50。方向,。島在8島的北偏西35。方向,則NACB的大小是.

15.如圖,在矩形ABC。中,E是邊AD上一點,F(xiàn),G分別是BE,CE的中點,連接■,DG,FG,若

AF=3,DG=4,FG=5,矩形A3CD的面積為.

三、解答題(將解答過程寫在答題卡上指定的位置.本大題共有9題,計75分)

5x+Zyx

16.求代數(shù)式「一T+——r的值,其中x=2+y.

%--/y-x

17.解不等式?2專+1,并數(shù)軸上表示解集.

32

-4-3-2-101234

18.某校為響應(yīng)“傳承屈原文化?弘揚屈原精神”主題閱讀倡議,進一步深化全民閱讀和書香宜昌建設(shè),隨機抽取

了八年級若干名學生,對“雙減”后學生周末課外閱讀時間進行了調(diào)查.根據(jù)收集到數(shù)據(jù),整理后得到下列不完

整的圖表:

時間段/分鐘30<x<6060<x<9090<x<120120<x<150

組中值75105135

頻數(shù)/人6204

30-60

10%

分約

20~150\

/60-90分鐘

\90-120分*/

o%\/)

請你根據(jù)圖表中提供的信息,解答下面的問題:

(1)扇形統(tǒng)計圖中,120750分鐘時間段對應(yīng)扇形的圓心角的度數(shù)是;a=;樣本數(shù)據(jù)的中位數(shù)

位于~分鐘時間段:

(2)請將表格補充完整;

(3)請通過計算估計該校八年級學生周末課外平均閱讀時間.

19.石拱橋是我國古代人民勤勞和智慧的結(jié)晶(如圖1),隋代建造的趙州橋距今約有1400年歷史,是我國古代石

拱橋的代表.如圖2是根據(jù)某石拱橋的實物圖畫出的幾何圖形,橋的主橋拱是圓弧形,表示為橋的跨度

(弧所對的弦長)AB=26m,設(shè)A8所在圓的圓心為。,半徑0CLA3,垂足為£>.拱高(弧的中點到弦的

距離)CD=5m.連接08.

圖1圖2

(1)直接判斷AO與BD的數(shù)量關(guān)系;

(2)求這座石拱橋主橋拱的半徑(精確到1m).

20.知識小提示:要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角。一般要滿足

53°<?<72°.如圖,現(xiàn)有一架長4m的梯子A3斜靠在一豎直的墻A。上.

(1)當人安全使用這架梯子時,求梯子頂端A與地面距離的最大值;

(2)當梯子底端B距離墻面1.64m時,計算NA50等于多少度?并判斷此時人是否能安全使用這架梯子?

(參考數(shù)據(jù):sin53°=?0.80,cos53°?0.60,tan53°?1.33,sin72°?0.95.cos72°?0.31.tan72°?3.08.

sin66°?0.91,cos66°?0.41,tan66°?2.25)

21.已知菱形ABC。中,E是邊AB的中點,尸是邊AD上一點.

(1)如圖1,連接C£,CF.CE±AB,CFLAD.

①求證:CE=CF;

②若AE=2,求CE的長;

(2)如圖2,連接CE,EF.若AE=3,所=2A尸=4,求CE的長.

22.某造紙廠為節(jié)約木材,實現(xiàn)企業(yè)綠色低碳發(fā)展,通過技術(shù)改造升級,使再生紙項目的生產(chǎn)規(guī)模不斷擴大.該廠

3,4月份共生產(chǎn)再生紙800噸,其中4月份再生紙產(chǎn)量是3月份的2倍少100噸.

(1)求4月份再生紙的產(chǎn)量;

(2)若4月份每噸再生紙的利潤為1000元,5月份再生紙產(chǎn)量比上月增加〃?%.5月份每噸再生紙的利潤比上月

增加二%,則5月份再生紙項目月利潤達到66萬元.求俄的值;

2

(3)若4月份每噸再生紙利潤為1200元,4至6月每噸再生紙利潤的月平均增長率與

6月份再生紙產(chǎn)量比上月增長的百分數(shù)相同,6月份再生紙項目月利潤比上月增加了25%.求6月份每噸再生紙的

利潤是多少元?

23.己知,在一A8C中,ZACB=90°,BC=6,以為直徑的(。與A3交于點“,將ABC沿射線AC

平移得到防,連接5E.

(1)如圖1,。石與相切于點G.

①求證:BE=EG;

②求的值;

(2)如圖2,延長”0與?O交于點K,將..£>所沿折疊,點尸的對稱點尸恰好落在射線8K上.

①求證:HK//EF';

②若KF=3,求AC的長.

24.已知拋物線y=o?+公一2與x軸交于A(-l,0),8(4,0)兩點,與V軸交于點C.直線/由直線平移得

到,與丁軸交于點后(0,〃).四邊形MNP。的四個頂點的坐標分別為M(加+1,加+3),

產(chǎn)(加+5,加),Q(〃?+5,〃?+3).

(2)若點”在第二象限,直線/與經(jīng)過點M雙曲線y=&有且只有一個交點,求〃2的最大值;

X

(3)當直線/與四邊形MNPQ、拋物線y=ox2+/zr-2都有交點時,存在直線/

,對于同一條直線/上的交點,直線/與四邊形MNPQ的交點的縱坐標都不大于它與拋物線^=奴2+法一2的交

點的縱坐標.

①當機=一3時,直接寫出〃取值范圍;

②求〃?的取值范圍.

2022年湖北省宜昌市初中學業(yè)水平考試數(shù)學試卷

一、選擇題(下列各題中,只有一個選項是符合題目要求的,請在答題卡上指定的位置填涂符合要

求的選項前面的字母代號,每題3分,計33分)

1.下列說法正確的個數(shù)是()

①一2022的相反數(shù)是2022;②一2022的絕對值是2022;③」一的倒數(shù)是2022.

2022

A.3B.2C.1D.0

【答案】A

【分析】根據(jù)相反數(shù)、絕對值、倒數(shù)的定義逐個判斷即可.

【詳解】①一2022的相反數(shù)是2022,故此說法正確;②—2022的絕對值是2022,故此說法正確;③」一的倒數(shù)

2022

是2022,故此說法正確;正確的個數(shù)共3個;

故選:A.

【點睛】本題考查相反數(shù)、絕對值、倒數(shù)的含義,只有符號相反的兩個數(shù)叫做互為相反數(shù),數(shù)軸上一個數(shù)所對應(yīng)

的點與原點的距離叫做該數(shù)的絕對值,分子分母互換位置相乘等于1的兩個數(shù)互為倒數(shù),熟知定義是解題的關(guān)

鍵.

2.將四個數(shù)字看作一個圖形,則下列四個圖形中,是中心對稱圖形的是()

人6666氏99996669。6699

【答案】D

【分析】中心對稱圖形的定義:把一個圖形繞著某個點旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么

這個圖形叫做中心對稱圖形,根據(jù)中心對稱圖形的定義逐項判定即可.

【詳解】解:根據(jù)中心對稱圖形定義,可知6699符合題意,

故選:D.

【點睛】本題考查中心對稱圖形,掌握中心對稱圖形定義,能根據(jù)定義判定圖形是否是中心對稱圖形是解決問題

的關(guān)鍵.

3.我市圍繞創(chuàng)建全國文明典范城市、傳承弘揚屈原文化,組織開展了“喜迎二十大、永遠跟黨走、奮進新征程”

等系列活動.在2022

年“書香宜昌?全民讀書月”暨“首屆屈原文化月”活動中,100多個社區(qū)圖書室、山區(qū)學校、農(nóng)家書屋、”護

苗”工作站共獲贈了價值100萬元的紅色經(jīng)典讀物、屈原文化優(yōu)秀讀物和智能書柜.“100萬”用科學記數(shù)法表示

為()

AlOOxlO4B.IxlO5C.IxlO6D.IxlO7

【答案】C

【分析】科學記數(shù)法的表示形式為“xi(r的形式,其中上同<10,"為整數(shù).確定〃的值時,要看把原數(shù)變成〃

時,小數(shù)點移動了多少位,〃的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值210時,〃是正數(shù);當原數(shù)的絕對

值<1時,〃是負數(shù).

【詳解】解:1000000=1x1()6,

故選:C.

【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為。X10"的形式,其中上同<10,〃為整數(shù),表

示時關(guān)鍵要正確確定”的值以及〃的值.

4.下列運算第送的是()

A.%3-x3=x6B.f+無2=dC.(丁)~=彳6D.x3+x3=x6

【答案】D

【分析】根據(jù)同底數(shù)寨的乘除法,暴的乘方,合并同類項等計算法則求解判斷即可.

【詳解】解:A、x3.x3=x6.計算正確,不符合題意;

B、計算正確,不符合題意;

C、(X3)2=X6,計算正確,不符合題意;

D、X3+?=2X3,計算錯誤,符合題意;

故選D.

【點睛】本題主要考查了同底數(shù)基的乘除法,幕的乘方,合并同類項,熟知相關(guān)計算法則是解題的關(guān)鍵.

5.已知經(jīng)過閉合電路的電流/(單位:A)與電路的電阻R(單位:Q)是反比例函數(shù)關(guān)系.根據(jù)下表判斷〃和

8的大小關(guān)系為()

//A5ah1

R/Q2030405060708090100

A.a>bB.a>bC.a<bD.a<b

【答案】A

【分析】根據(jù)電流/與電路的電阻A是反比例函數(shù)關(guān)系,由反比例函數(shù)圖像是雙曲線,在同一象限內(nèi)x和〉的變化

規(guī)律是單調(diào)的,即可判斷

(詳解】V電流/與電路的電阻R是反比例函數(shù)關(guān)系

由表格:/=5,R=20;/=1,/?=100

在第一象限內(nèi),/隨R的增大而減小

V20<40<80<100

5>a>h>\

故選:A

【點睛】本題考查雙曲線圖像的性質(zhì);解題關(guān)鍵是根據(jù)表格判斷出雙曲線在第一象限,單調(diào)遞減

6.如圖,在一ABC中,分別以點5和點。為圓心,大于長為半徑畫弧,兩弧相交于點N.作直線

2

MN,交AC于點。,交BC于點、E,連接80.若AB=7,AC=12,BC=6,則△A&)的周長為()

A.25B.22C.19D.18

【答案】C

【分析】由垂直平分線的性質(zhì)可得BO=C£>,由△AB。的周長=AB+AO+BO=A8+AQ+C£>=AB+AC得到答

案.

【詳解】解:由作圖的過程可知,OE是8c的垂直平分線,

:.BD=CD,

VAB=1,AC=12f

???ZkAB。的周長=48+AD+BD

=AB+AD+CD

=AB+AC

=19.

故選:C

【點睛】此題考查了線段垂直平分線的作圖、線段垂直平分線的性質(zhì)、三角形的周長等知識,熟練掌握線段垂直

平分線的性質(zhì)是解題的關(guān)鍵.

7.如圖,四邊形ABC。內(nèi)接于0,連接。8,0D,BD,若NC=110°,則NQBD=()

A.15°B.20°C.25°D.30°

【答案】B

【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出NA,根據(jù)圓周角定理可得N3OO,再根據(jù)Q3=OD計算即可.

(詳解】V四邊形ABCD內(nèi)接于;O,

:.ZA=1800-ZBCZ>70°,

由圓周角定理得,NBQD=2NA=140。,

OB=OD

180°-ZBQ£)

ZOBD=ZODB==20°

2

故選:B.

【點睛】此題考查圓周角定理和圓內(nèi)接四邊形的性質(zhì),掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.

8.五一小長假,小華和家人到公園游玩.湖邊有大小兩種游船.小華發(fā)現(xiàn)1艘大船與2艘小船一次共可以滿載游客

32人,2艘大船與1艘小船一次共可以滿載游客46人.則1艘大船與1艘小船一次共可以滿載游客的人數(shù)為

()

A.30B.26C.24D.22

【答案】B

【分析】設(shè)1艘大船與1艘小船分別可載x人,y人,根據(jù)“1艘大船與2

艘小船一次共可以滿載游客32人”和“2艘大船與1艘小船一次共可以滿載游客46人”這兩個等量關(guān)系列方程組,

解出(x+y)即可.

【詳解】設(shè)1艘大船與1艘小船分別可載x人,),人,

x+2y-32①

依題意:

2x+y=46②

(①+②)+3得:x+y=26

故選:B.

【點睛】本題考查二元一次方程組的實際應(yīng)用;注意本題解出(x+y)的結(jié)果即可.

9.如圖是小強散步過程中所走的路程s(單位:m)與步行時間,(單位:min)的函數(shù)圖象.其中有一時間段

小強是勻速步行的.則這一時間段小強的步行速度為()

A.50m/minB.40m/minC.---m/minD.20m/min

7

【答案】D

【分析】根據(jù)函數(shù)圖象得出勻速步行的路程和所用的時間,即可求出小強勻速步行的速度.

【詳解】解:根據(jù)圖象可知,小強勻速步行的路程為2000—1200=800(m),

勻速步行的時間為:70-30=40(min),

這一時間段小強的步行速度為:—=20(m/min),故D正確.

40

故選:D.

【點睛】本題主要考查了從函數(shù)圖象中獲取信息,根據(jù)圖象得出勻速步行的路程和時間,是解題的關(guān)鍵.

10.如圖是一個教室平面示意圖,我們把小剛座位“第1列第3排”記為(1,3)

.若小麗的座位為(3,2),以下四個座位中,與小麗相鄰且能比較方便地討論交流的同學的座位是()

7」

H呂

.呂

□呂

西

<a,三F.

1、

A.(1,3)B.(3,4)C.(4,2)D.(2,4)

【答案】C

【分析】根據(jù)小麗的座位坐標為(3,2),根據(jù)四個選項中的座位坐標,判斷四個選項中與其相鄰的座位,即可得出

答案.

【詳解】解:???只有(4,2)與(3,2)是相鄰的,

二與小麗相鄰且能比較方便地討論交流的同學的座位是(4,2),故C正確.

故選:C.

【點睛】本題主要考查了坐標確定位置,關(guān)鍵是根據(jù)有序數(shù)對表示點的位置,根據(jù)點的坐標確定位置.

11.某校團支部組織部分共青團員開展學雷鋒志愿者服務(wù)活動,每個志愿者都可以從以下三個項目中任選一項參

加:①敬老院做義工;②文化廣場地面保潔;③路口文明崗值勤.則小明和小慧選擇參加同一項目的概率是

()

1212

A.-B.-C.-D.—

3399

【答案】A

【分析】先根據(jù)題意畫出樹狀圖,然后再根據(jù)概率的計算公式進行計算即可.

【詳解】解:根據(jù)題意畫出樹狀圖,如圖所示:

開始

?.?共有9種等可能的情況,其中小明和小慧選擇參加同一項目的有3種情況,

31

...小明和小慧選擇參加同一項目的概率為P=—=一,故A正確.

93

故選:A.

【點睛】本題主要考查了概率公式、畫樹狀圖或列表格求概率,根據(jù)題意畫出樹狀圖或列出表格,是解題的關(guān)

鍵.

二、填空題(將答案寫在答題卡上指定的位置.每題3分,計12分)

12.中國是世界上首先使用負數(shù)的國家.兩千多年前戰(zhàn)國時期李悝所著的《法經(jīng)》中已出現(xiàn)使用負數(shù)的實例.《九

章算術(shù)》的“方程”一章,在世界數(shù)學史上首次正式引入負數(shù)及其加減法運算法則,并給出名為“正負術(shù)”的算

法.請計算以下涉及“負數(shù)”的式子的值:-1-(-3)2=---------

【答案】-10

【分析】根據(jù)有理數(shù)運算法則進行計算即可.

【詳解】解:一1—(―3)2=—1—9=—10,

故答案為:-10.

【點睛】此題考查含乘方的有理數(shù)混合運算,掌握乘方的計算法則,有理數(shù)混合運算的計算法則是解題的關(guān)鍵.

13.如圖,點A,B,C都在方格紙的格點上,_ABC繞點A順時針方向旋轉(zhuǎn)90°后得到_A3'C',則點8運動

的路徑88'的長為______-

【答案】y

2

【分析】先求出AB的長,再根據(jù)弧長公式計算即可.

【詳解】由題意得,AC=4,BC=3,

AB^y/AC2+BC2=742+32=5>

V.ABC繞點A順時針方向旋轉(zhuǎn)90。后得到,ABC,

ZBABf=90°,

,,..,90°4?55

;?88'的長為:1=-------=一萬,

180°2

故答案為:一萬.

2

【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理和弧長公式,熟記弧長公式是解題的關(guān)鍵.

14.如圖,。島在A島的北偏東50°方向,。島在B島的北偏西35°方向,則NAC3的大小是

【答案】85°##85度

【分析】過C作C/〃八4交AB于尸,根據(jù)方位角的定義,結(jié)合平行線性質(zhì)即可求解.

【詳解】解:。島在4島的北偏東50°方向,

.-.zmc=50°,

。島在B島的北偏西35°方向,

:"CBE=35。,

過C作C/〃D4交A5于尸,如圖所示:

:.DA//CF//EB,

:.ZFCA=ADAC=50°,NFCB=NCBE=35°,

ZACB=ZFCA+ZFCB=85°,

故答案為:85°.

【點睛】本題考查方位角的概念與平行線的性質(zhì)求角度,理解方位角的定義,并熟練掌握平行線的性質(zhì)是解決問

題的關(guān)鍵.

15.如圖,在矩形A8C。中,E是邊AD上一點,F(xiàn),G分別是3E,CE的中點,連接Ab,DG,FG,若

AF=3,DG=4,FG=5,矩形ABC。的面積為.

F---------------------------V

【答案】48

【分析】根據(jù)三角形中位線的性質(zhì),直角三角形斜邊上中線等于斜邊的一半得出相關(guān)線段長,利用勾股定理逆定

理判定NEEG=90°,再結(jié)合S矩形.8=8?!辏?=25.叱=2xgBE-EC即可得出結(jié)論.

【詳解】解:在矩形ABCD中,NBAE=90°,ZCDE=90°,

在矩形A3CD中,F(xiàn),G分別是BE,CE的中點,F(xiàn)G=5,

.?.FG是ABCE的中位線,即3C=2fG=10,

在中,尸是的中點,AF=3,

4/是Rt^ABE斜邊上的中線,即AF=EE=BE=』BE=3,

2

/.BE—6,

在ACOE中,G是的中點,DG=4,

??.DG是R/ACOE斜邊上的中線,即。G=XG=CG='CE=4,

2

CE-8,

在AEPG中,EF=3,EG=4,FG=5,即FG?=25=9+16=£尸2+七62,

.?.毋6是直角三角形,且NFEG=90°,

過E作EHJ.BC于H,如圖所示:

S^=BC-EH=2S“BFC=2X」BE-EC=6X8=48,

MIjizARocC/vn/jjjfcc2

故答案為:48.

【點睛】本題考查矩形面積,涉及到中位線的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、矩形的性質(zhì)、勾

股定理逆定理、三角形等面積法等知識,熟練掌握相關(guān)性質(zhì),準確作出輔助線表示是解決問題的關(guān)鍵.

三、解答題(將解答過程寫在答題卡上指定的位置.本大題共有9題,計75分)

JX+Zyx

16.求代數(shù)式1~^+-_r的值,其中x=2+y.

¥-yy-x-

【答案】1

【分析】先將原式化為同分母,再利用同分母分式的減法法則計算,約分到最簡結(jié)果,將x=2+y代入計算即可

求出值.

3x+2yx_2x+2y_2(%+y)_2

【詳解】原式

x2-y2x2-y2(x+y)(x-y)x-y

當x=2+y時、x-y=2,

2

原式=_=1.

2

【點睛】本題考查了分式的化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.

x-1>x-3

17.解不等式+1,并在數(shù)軸上表示解集.

32

-4-3-2-101234

【答案】x<l,在數(shù)軸上表示解集見解析

【分析】通過去分母,去括號,移項,系數(shù)化為1求得在數(shù)軸上表示解集即可.

【詳解】解:;2三±+1

32

去分母,得2(x-l)N3(x-3)+6,

去括號,得2x-2之3%—9+6,

移項,合并同類項得-xN-1,

系數(shù)化為1,得xWl,

在數(shù)軸上表示解集如圖:

-4-3-2

【點睛】本題考查了解一元一次不等式及在數(shù)軸上表示不等式的解集,解題的關(guān)鍵是正確的解一元一次不等式,

解集為“4”時要用實心點表示.

18.某校為響應(yīng)“傳承屈原文化?弘揚屈原精神”主題閱讀倡議,進一步深化全民閱讀和書香宜昌建設(shè),隨機抽取

了八年級若干名學生,對“雙減”后學生周末課外閱讀時間進行了調(diào)查.根據(jù)收集到的數(shù)據(jù),整理后得到下列不完

整的圖表:

時間段/分鐘30Vx<606()<x<9()90<x<120120<x<150

組中值75105135

頻數(shù)/人6204

請你根據(jù)圖表中提供的信息,解答下面的問題:

(1)扇形統(tǒng)計圖中,120~150分鐘時間段對應(yīng)扇形圓心角的度數(shù)是;a=;樣本數(shù)據(jù)的中位數(shù)

位于~分鐘時間段:

(2)請將表格補充完整:

(3)請通過計算估計該校八年級學生周末課外平均閱讀時間.

【答案】(1)36°;25;60,90

(2)表格見解析(3)該校八年級學生周末課外平均閱讀時間為84分鐘

【分析】(1)根據(jù)120750分鐘時間的占比和人數(shù)計算出調(diào)查的總數(shù)人為40,根據(jù)總?cè)藬?shù)和圖表即可計算出相應(yīng)

的答案;

(2)30-60分鐘時間段組中值為30和60的平均值;

(3)分別計算出各個統(tǒng)計時間段調(diào)查人數(shù)的比例,根據(jù)加權(quán)平均數(shù)計算方法求得答案.

【小問1詳解】

;根據(jù)扇形統(tǒng)計圖中,120~150分鐘時間段的占比為10%

???120-150分鐘時間段對應(yīng)扇形的圓心角的度數(shù)為10%x360°=36°

V120-150分鐘時間段的人數(shù)為4人

4

二調(diào)查總?cè)藬?shù)為——=40人

10%

.?.90~120分鐘時間段的人數(shù)為40—6—20—4=10人

90~120分鐘時間段的人數(shù)與總?cè)藬?shù)的比為竺x100%=25%

40

.,.“=25

?.?調(diào)查總?cè)藬?shù)為40人,且樣板的中位數(shù)為第20和21位的平均數(shù)

...樣本數(shù)據(jù)的中位數(shù)位于60-90分鐘時間段

故答案為:36°;25;60,90;

【小問2詳解】

30-60分鐘時間段組中值為30+60=45

2

90~120分鐘時間段的頻數(shù)/人為40—6-20-4=1()

表格補充如下:

時間段/分鐘30<x<6060<x<9090Kx<120120<x<150

組中值4575105135

頻數(shù)/人620104

【小問3詳解】30~60分鐘時間段的調(diào)查人數(shù)占總?cè)藬?shù)的比例為幺xl00%=15%;

40

60-90分鐘時間段的調(diào)查人數(shù)占總?cè)藬?shù)的比例為型x100%=50%;

40

90-120分鐘時間段的調(diào)查人數(shù)占總?cè)藬?shù)的比例為25%;

120~140分鐘時間段的調(diào)查人數(shù)占總?cè)藬?shù)的比例為10%;

,八年級學生周末課外平均閱讀時間為:45xl5%+75x50%+105x25%+135xl0%=84分鐘,

該校八年級學生周末課外平均閱讀時間為84分鐘.

【點睛】本題考查數(shù)據(jù)統(tǒng)計相關(guān)知識,解題的關(guān)鍵是掌握數(shù)據(jù)扇形統(tǒng)計圖、中位數(shù)、加權(quán)平均數(shù)的性質(zhì),從而完

成求解.

19.石拱橋是我國古代人民勤勞和智慧的結(jié)晶(如圖1),隋代建造的趙州橋距今約有1400年歷史,是我國古代石

拱橋的代表.如圖2是根據(jù)某石拱橋的實物圖畫出的幾何圖形,橋的主橋拱是圓弧形,表示為48.橋的跨度

(弧所對的弦長)=26m,設(shè)A8所在圓的圓心為。,半徑0CLA8,垂足為£>.拱高(弧的中點到弦的

距離)CD=5m.連接OB.

圖1圖2

(1)直接判斷與5。的數(shù)量關(guān)系;

(2)求這座石拱橋主橋拱的半徑(精確到1m).

【答案】(1)AD=BD

(2)這座石拱橋主橋拱半徑約為19m

【分析】(1)根據(jù)垂徑定理即可得出結(jié)論;

(2)設(shè)主橋拱半徑為R,在RfAOBD中,根據(jù)勾股定理列出方程,即可得出答案.

【小問1詳解】

解:?.?半徑OCJ_AB,

AD=BD.

故答案為:AD=BD.

【小問2詳解】

設(shè)主橋拱半徑為/?,由題意可知AB=26,CD=5,

:.5£>=-A5=-x26=13,OD=OC-CD=R-5,

22

在Rt/\OBD中,由勾股定理,^OB2=BD2+OD-,

即R2=132+(/?-5)2,

解得R=19.4,

/.火=19,

因此,這座石拱橋主橋拱半徑約為19m.

【點睛】此題考查垂徑定理和勾股定理,是重要考點,根據(jù)題意利用勾股定理列出方程是解題關(guān)鍵.

20.知識小提示:要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角a一般要滿足

53°<?<72°.如圖,現(xiàn)有一架長4nl的梯子A8斜靠在一豎直的墻AO上.

(1)當人安全使用這架梯子時,求梯子頂端A與地面距離的最大值;

(2)當梯子底端B距離墻面1.64m時,計算NA60等于多少度?并判斷此時人是否能安全使用這架梯子?

(參考數(shù)據(jù):sin53°?0.80,cos53°?0.60,tan53°?1.33,sin72°?0.95,cos72°?0.31,tan72°?3.08,

sin66°?0.91.cos66°?0.41,tan66°?2.25)

【答案】(1)梯子頂端A與地面的距離的最大值3.8米

(2)NABO=66°,人能安全使用這架梯子

【分析】(1)AB的長度固定,當NA8O越大,0A的高度越大,當。=72°時,A0取最大值,此時,根據(jù)

ZABO的正弦三角函數(shù)計算出0A長度即可;

(2)根據(jù)A8=4,OB=1.64,利用NA80的余弦函數(shù)值,即可求出乙480的大小,從而得到答案.

【小問1詳解】

V53°<a<72°

當a=72°時,A0取最大值,

A(~)

在RtAOB中,sinNAB0=——,

AB

AO^ABsinZABO=4sin72°a4x0.95=3.8,

所以梯子頂端A與地面的距離的最大值3.8米.

【小問2詳解】

在,RfAQ5中,cosZABO=——,

AB

cosZABO=1.64-4=0.41,

cos66°?0.41,

ZABO=66°,

*/53°<a<72°,

人能安全使用這架梯子.

【點睛】本題考查三角函數(shù)的應(yīng)用,屬于中考常見考題,利用圖形中的直角三角形,建立三角函數(shù)模型是解題的

關(guān)鍵.

21.已知菱形A8C。中,£是邊AB的中點,尸是邊AO上一點.

(1)如圖1,連接CE,CF.CE1AB,CFA.AD.

①求證:CE=CF;

②若A£=2,求CE的長;

(2)如圖2,連接CE,EF.若AE=3,EF=2AF=4,求CE的長.

【答案】(1)①見解析;②CE=2^

(2)EC=6

【分析】(1)①根據(jù)A45可證得:八BECdDFC,即可得出結(jié)論;

②連接AC,可證得」ABC是等邊三角形,即可求出CE=2百;

(2)延長EE交CB的延長線于點根據(jù)A4S可證得&A石廠名-BEM,可得出用E=4,80=2,

MBMEI

MC=8,則——=——=一,即可證得△ME8S&VQE,即可得出EC的長.

MEMC2

小問1詳解】

⑴①:CELAB,CF±AD,

NBEC=ZDFC=90°,

?.?四邊形A5CO是菱形,

:.ZB=ZD,BC=CD,

:..BE8DFC(AAS),

:.CE=CF.

②如圖,連接AC.

;E是邊AB的中點,CELAB,

BC=AC,

又由菱形ABC。,得BC=AB,

4ABC1是等邊三角形,

ZE4C=60°,

在Rr_A£C中,AE=2,

EC=AEtan60。=26,

CE=2瓜

【小問2詳解】

如圖,延長在交CB的延長線于點M,

由菱形ABC。,得AD〃BC,AB=BC,

:.ZAFE=ZM,ZA=NEBM,

,/E是邊AB的中點,

/.AE=BE,

:.△AE&ABEM(A4S),

:.ME=EF,MB=AF,

VAE=3,EF=2AF=4,

:.ME=4,BM=2,BE=3,

:.BC=A8=2A£=6,

MC=8,

?MB_2_]ME_4_1

''ME~4~2'MC~8~2,

MBMEh、,八山“

---,而NM為公共角.

MEMC

AMEBsAMCE,

.BEMB2

又,:BE=3,

;?EC-6.

【點睛】本題考查了菱形的性質(zhì),等邊三角形的性質(zhì)與判定,銳角三角函數(shù)求線段長度,全等三角形的性質(zhì)和判

定,相似三角形的性質(zhì)與判定,掌握以上知識點并靈活運用是解題的關(guān)鍵.

22.某造紙廠為節(jié)約木材,實現(xiàn)企業(yè)綠色低碳發(fā)展,通過技術(shù)改造升級,使再生紙項目的生產(chǎn)規(guī)模不斷擴大.該廠

3,4月份共生產(chǎn)再生紙800噸,其中4月份再生紙產(chǎn)量是3月份的2倍少100噸.

(1)求4月份再生紙的產(chǎn)量;

(2)若4月份每噸再生紙的利潤為1000元,5月份再生紙產(chǎn)量比上月增加/〃%.5月份每噸再生紙的利潤比上月

m

增加一%,則5月份再生紙項目月利潤達到66萬元.求m的值;

2

(3)若4月份每噸再生紙的利潤為1200元,4至6月每噸再生紙利潤的月平均增長率與6月份再生紙產(chǎn)量比上月

增長的百分數(shù)相同,6月份再生紙項目月利潤比上月增加了25%.求6月份每噸再生紙的利潤是多少元?

【答案】(1)4月份再生紙的產(chǎn)量為500噸

(2)m的值20

(3)6月份每噸再生紙的利潤是1500元

【分析】(1)設(shè)3月份再生紙產(chǎn)量為x噸,則4月份的再生紙產(chǎn)量為(2x-10())噸,然后根據(jù)該廠3,4月份共生

產(chǎn)再生紙80()噸,列出方程求解即可;

(2)根據(jù)總利潤=每一噸再生紙的利潤x數(shù)量列出方程求解即可;

(3)設(shè)4至6月每噸再生紙利潤的月平均增長率為y,5月份再生紙的產(chǎn)量為。噸,根據(jù)總利潤=每一噸再生紙的

利潤x數(shù)量列出方程求解即可;

【小問1詳解】

解:設(shè)3月份再生紙產(chǎn)量為x噸,則4月份的再生紙產(chǎn)量為(2x-100)噸,

由題意得:x+(2x-100)=800,

解得:x=300,

2x—100=500,

答:4月份再生紙的產(chǎn)量為500噸;

【小問2詳解】

(m

解:由題意得:500(1+m%)-10001+—%=660000,

解得:相%=20%或〃2%=-3.2(不合題意,舍去)

m-20,

m的值20;

【小問3詳解】

解:設(shè)4至6月每噸再生紙利潤的月平均增長率為5月份再生紙的產(chǎn)量為a噸,

1200(1+?a(l+y)=(1+25%)x1200(1+y).?

A1200(1+y)2=1500

答:6月份每噸再生紙的利潤是1500元.

【點睛】本題主要考查了一元一次方程的應(yīng)用,一元二次方程的應(yīng)用,正確理解題意,列出方程求解是解題的關(guān)

鍵.

23.己知,在A8c中,ZACB=90°,BC=6,以8c為直徑的與AB交于點”,將ABC沿射線AC

平移得到.£)防,連接3E.

兇?出2

(1)如圖1,DE與.)0相切于點G.

①求證:BE=EG;

②求BE-CD的值;

(2)如圖2,延長與交于點K,將..£>石尸沿OE折疊,點尸對稱點尸恰好落在射線3K上.

①求證:HK//EF'-,

②若KF'=3,求AC的長.

【答案】(1)①見解析;②BECD=9

(2)①見解析;②AC的長為2G

【分析】(1)①用切線角定理即可證

②連接OE,OD,0G,證明△OOGS2XEOG,利用相似對應(yīng)邊成比例即可得到

(2)①延長"K交班于點。,設(shè)NABC=a,利用題目中平移,折疊的對應(yīng)角相等,ZBQ。和用a

表示出來,得到NBQO=NBEn即可

②連接"',交OE于點N,證明AHBK鄉(xiāng)AENF,設(shè)8K=x,利用△HBKs^FCB,算出x;在

RtAHBK中,sinNBHK=^=2=L在R/_ABC中,即可求出AC的長

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論