![2023年七年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)案全冊(cè)_第1頁](http://file4.renrendoc.com/view12/M06/08/29/wKhkGWb6AdCAaq1OAADpjr2OcSo656.jpg)
![2023年七年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)案全冊(cè)_第2頁](http://file4.renrendoc.com/view12/M06/08/29/wKhkGWb6AdCAaq1OAADpjr2OcSo6562.jpg)
![2023年七年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)案全冊(cè)_第3頁](http://file4.renrendoc.com/view12/M06/08/29/wKhkGWb6AdCAaq1OAADpjr2OcSo6563.jpg)
![2023年七年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)案全冊(cè)_第4頁](http://file4.renrendoc.com/view12/M06/08/29/wKhkGWb6AdCAaq1OAADpjr2OcSo6564.jpg)
![2023年七年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)案全冊(cè)_第5頁](http://file4.renrendoc.com/view12/M06/08/29/wKhkGWb6AdCAaq1OAADpjr2OcSo6565.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
七年級(jí)數(shù)學(xué)第一章導(dǎo)學(xué)案
第1課時(shí)
內(nèi)容:正數(shù)和負(fù)數(shù)(1)
學(xué)習(xí)目的:
1.整頓前兩個(gè)學(xué)段學(xué)過的整數(shù)、分?jǐn)?shù)(小數(shù))知識(shí),掌握正數(shù)和負(fù)數(shù)概念.
2.會(huì)辨別兩種不一樣意義的量,會(huì)用符號(hào)表達(dá)正數(shù)和負(fù)數(shù).
3.體驗(yàn)數(shù)學(xué)發(fā)展是生活實(shí)際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的愛好.
學(xué)習(xí)重點(diǎn):兩種意義相反的量
學(xué)習(xí)難點(diǎn):對(duì)的會(huì)辨別兩種不一樣意義的量
教學(xué)措施:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合
教學(xué)過程
一、學(xué)前準(zhǔn)備
1.小學(xué)里學(xué)過哪些數(shù)請(qǐng)寫出來:、、.
2.在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?有無比0小時(shí)數(shù)?假如有,那叫做什么數(shù)?
3.閱讀書本P1和P2三幅圖(重點(diǎn)是三個(gè)例子,邊閱讀邊思索)
回答上面提出的問題:
二、探究新知
1.正數(shù)與負(fù)數(shù)的產(chǎn)生
1)、生活中具有相反意義的量
如:運(yùn)進(jìn)5噸與運(yùn)出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中碰到的具有相反
意義的量.
請(qǐng)你也舉一種具有相反意義量的例子:
2)負(fù)數(shù)的產(chǎn)生同樣是生活和生產(chǎn)的需要
2.正數(shù)和負(fù)數(shù)的表達(dá)措施
1)一般地,我們把上升、運(yùn)進(jìn)、零上、收入、前進(jìn)、高出等規(guī)定為正的,而與它相反的量,如:下降、
運(yùn)出、零下、支出、后退、低于等規(guī)定為負(fù)的。正的量就用小學(xué)里學(xué)過的數(shù)表達(dá),有時(shí)也在它前面放上
一種“+”(讀作正)號(hào),如前面日勺5.7、50;負(fù)的量用小學(xué)學(xué)過時(shí)數(shù)前面放上“一”(讀作負(fù))號(hào)來表達(dá),
如上面的—3.18、-47o
2)活動(dòng)兩個(gè)同學(xué)為一組,一同學(xué)任意說意義相反的兩個(gè)量,另一種同學(xué)用正負(fù)數(shù)表達(dá).
3)閱讀P3練習(xí)前的內(nèi)容
3.正數(shù)、負(fù)數(shù)的概念
1)不小于0時(shí)數(shù)叫做,不不小于0時(shí)數(shù)叫做。
2)正數(shù)是不小于0的數(shù),負(fù)數(shù)是時(shí)數(shù),0既不是正數(shù)也不是負(fù)數(shù)。
3)練習(xí)P3第一題到第四題(直接做在書本上)
三、練習(xí)
1.讀出下列各數(shù),指出其中哪些是正數(shù),哪些是負(fù)數(shù)?
—2,0.6,+,0,—3.1415,200,—754200,
2、舉出幾對(duì)(至少兩對(duì))具有相反意義的量,并分別用正、負(fù)數(shù)表達(dá)
四、應(yīng)用遷移,鞏固提高(A組為必做題)
A組1.任意寫出5個(gè)正數(shù):;任意寫出5個(gè)負(fù)數(shù):.
2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應(yīng)記作,-4萬元表
達(dá).
3.已知下列各數(shù):,,3.14,+3065,0,-239.
則正數(shù)有;負(fù)數(shù)有.
4.假如向東為正,那么-50m表達(dá)的意義是..................()
A.向東行進(jìn)50mC.向北行進(jìn)50m
B.向南行進(jìn)50mD.向西行進(jìn)501n
5.下列結(jié)論中對(duì)時(shí)的是................................()
A.0既是正數(shù),又是負(fù)數(shù)B.0是最小時(shí)正數(shù)
C.0是最大的負(fù)數(shù)D.0既不是正數(shù),也不是負(fù)數(shù)
6.給出下列各數(shù):-3,0,+5,,+3.1,,2023,+2023.
其中是負(fù)數(shù)的有..........................................()
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
B組
1.零下15℃,表達(dá)為比0℃低4℃時(shí)溫度是.
2.地圖上標(biāo)有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,其中最高處為
地,最低處為地.
3.“甲比乙大-3歲”表達(dá)時(shí)意義是.
C組
1.寫出比。小4時(shí)數(shù),比4小2的數(shù),比-4小2的數(shù).
2.假如海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動(dòng),
試用正負(fù)數(shù)分別表達(dá)潛水艇和鯊魚的高度.
第2課時(shí)
內(nèi)容:正數(shù)和負(fù)數(shù)(2)
學(xué)習(xí)目的:
1.會(huì)用正、負(fù)數(shù)表達(dá)具有相反意義的量.
2.通過正、負(fù)數(shù)學(xué)習(xí),培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí).
3.通過探究,滲透對(duì)立統(tǒng)一的辨證思想
學(xué)習(xí)重點(diǎn):用正、負(fù)數(shù)表達(dá)具有相反意義的量
學(xué)習(xí)難點(diǎn):實(shí)際問題中的數(shù)量關(guān)系
教學(xué)措施:講練相結(jié)合
教學(xué)過程
一、.學(xué)前準(zhǔn)備
通過上節(jié)課的學(xué)習(xí),我們懂得在實(shí)際生產(chǎn)和生活中存在著兩種不一樣意義的量,為了辨別它們,我們用正
數(shù)和負(fù)數(shù)來分別表達(dá)它們.
問題1:“零”為何即不是正數(shù)也不是負(fù)數(shù)呢?
引導(dǎo)學(xué)生思索討論,借助舉例闡明.
參照例子:溫度表達(dá)中時(shí)零上,零下和零度.
二.探究理解處理問題
問題2:(教科書第4頁例題)
先引導(dǎo)學(xué)生分析,再讓學(xué)生獨(dú)立完畢
例(1)一種月內(nèi),小明體重增長(zhǎng)2kg,小華體重減少1kg,小強(qiáng)體重?zé)o變化,寫出他們這個(gè)月的體重增長(zhǎng)
值;
(2)2023年下列國(guó)家的商品進(jìn)出口總額比上一年的變化狀況是:
美國(guó)減少6.4%,德國(guó)增長(zhǎng)1.3%,
法國(guó)減少2.4%,英國(guó)減少3.5%,
意大利增長(zhǎng)0.2%,中國(guó)增長(zhǎng)7.5%.
寫出這些國(guó)家2023年商品進(jìn)出口總額的增長(zhǎng)率.
解:(1)這個(gè)月小明體重增長(zhǎng)2kg,小華體重增長(zhǎng)-1kg,小強(qiáng)體重增長(zhǎng)0kg.
(2)六個(gè)國(guó)家2023年商品進(jìn)出口總額的增長(zhǎng)率:
美國(guó)-6.4%,德國(guó)1.3%,
法國(guó)-2.4%,英國(guó)-3.5%,
意大利0.2%,中國(guó)7.5%.
三、鞏固練習(xí)
從0表達(dá)一種也沒有,是正數(shù)和負(fù)數(shù)的分界的角度引導(dǎo)學(xué)生理解.
在學(xué)生的討論中簡(jiǎn)樸簡(jiǎn)介分類的數(shù)學(xué)思想先不要給出有理數(shù)的概念.
在例題中,讓學(xué)生通過閱讀題中的含義,找出具有相反意義的量,決定哪個(gè)用正數(shù)表達(dá),哪個(gè)用負(fù)數(shù)表達(dá).
通過問題(2)提醒學(xué)生審題時(shí)要注意規(guī)定,題中求日勺是增長(zhǎng)率,不是增長(zhǎng)值.
四、閱讀思索
(教科書第8頁)用正負(fù)數(shù)表達(dá)加工容許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件與否合格?
2.你懂得尚有那些事件可以用正負(fù)數(shù)表達(dá)容許誤差嗎?請(qǐng)舉例.
五、小結(jié)
1.本節(jié)課你有那些收獲?
2、尚有沒處理的問題嗎?
六、應(yīng)用與拓展
必做題:
教科書5頁習(xí)題45:6.7、8題
選做題
1.甲冷庫的溫度是-12°C,乙冷庫的溫度比甲冷酷低5°C,則乙冷庫的溫度是
2.一種零件的I內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表達(dá)這種零件於I原則尺寸是9mm,加工規(guī)定最大不
超過原則尺寸多少?最小不不不小于原則尺寸多少?
3.吐魯番的海拔是一155m,珠穆朗瑪峰的海拔是8848m,它們之間相差多少米?
4.假如規(guī)定向東為正,那么從起點(diǎn)先走+40米,再走一60米抵達(dá)終點(diǎn),問終點(diǎn)在起點(diǎn)什么方向多少米?
應(yīng)怎樣表達(dá)?一共走過的旅程是多少米?
5.10筐橘子,以每筐15kg為原則,超過的公斤數(shù)記作正數(shù),局限性的公斤數(shù)記作負(fù)數(shù)。標(biāo)重的記錄狀況
如下:+1,-0.5,-0.5,-l,+0.5,-0.5,+0.5,+0.5,+0.5,—0.5。問這10筐橘子各重多少公斤?總重多
少公斤?
【解】T7°
6.一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表達(dá)這種零件的I原則尺寸是9mm,加工規(guī)定最大不
超過原則尺寸多少?最小不不不小于原則尺寸多少?【解】9.05mm,8.95mm
正數(shù)和負(fù)數(shù)鞏固提高練習(xí)
第3課時(shí)
1.具有相反意思的量
某市某一天的最高溫度是零上5℃,最低溫度是零下5℃現(xiàn)實(shí)生活中,像這樣的相反意義的量尚有諸多.
例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相
反的
“運(yùn)入”和“運(yùn)出”,其意義是相反的.同學(xué)們能舉例子嗎?
2.正數(shù)和負(fù)數(shù)
數(shù)學(xué)中采用符號(hào)來辨別,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作-5℃(讀作負(fù)5℃).
①高于海平面8848米,記作+8848米;低于海平面155米,記作米。
②假如80m表達(dá)向東走80m,那么一60m表達(dá)。
③假如水位升高31n時(shí)水位變化記作+3m,那么水位下降3m時(shí)水位變化記作m。
④月球表面的白天平均溫度是零上126℃,記作°C,夜間平均溫度是零下150℃,記作
________℃?
i歸納:j
問題1讀下列各數(shù),并指出其中哪些是正數(shù),哪些是負(fù)數(shù)。
42
-1,2.5,+-,0,-3.14,120,-1.732,——
37
正數(shù):____________________________________________________
3.有理數(shù)
正整數(shù)、0、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。(整數(shù)和分?jǐn)?shù)統(tǒng)
稱為有理數(shù))
正數(shù):正分?jǐn)?shù):
負(fù)數(shù):負(fù)分?jǐn)?shù):
負(fù)整數(shù):正整數(shù):
1.鞏固A:
2.假如收入100元記作+100元,那么支出180元記作;假如電梯上升了兩層記作+2,那
么—3表達(dá)電梯o
3.某校初一年級(jí)舉行乒乓球比賽,一班獲勝2局記作+2,二班失敗3局記作,三班不勝不敗
記作.
4.下列各數(shù)中既不是正數(shù)又不是負(fù)數(shù)的是()
A.-1B.-3C.-0.13D.0
4.1206不是()
A.有理數(shù)B.負(fù)數(shù)C.整數(shù)D.自然數(shù)
5.既是分?jǐn)?shù),又是正數(shù)的是()
A.+5B.-5C.0D.8
6.下列說法對(duì)的的是()
A.有理數(shù)是指整數(shù)、分?jǐn)?shù)、正有理數(shù)、零、負(fù)有理數(shù)這五類數(shù)
B.有理數(shù)不是正數(shù)就是負(fù)數(shù)
C.有理數(shù)不是整數(shù)就是分?jǐn)?shù);D.以上說法都對(duì)的
7.一潛水艇所在的高度為TOO米,假如它再下潛20米,則高度是,假如在本來的位置上再上
升20米,則高度是.
鞏固B:
1.判斷:①所有整數(shù)都是正數(shù);()②所有正數(shù)都是整數(shù):()
③奇數(shù)都是正數(shù);()④分?jǐn)?shù)是有理數(shù):()
2.把下列各數(shù)填入對(duì)應(yīng)的大括號(hào)內(nèi):-13.5,2,0,0,128,-2.236,3.14,+27,-,-15%,-11,26.
正數(shù)集合{…},負(fù)數(shù)集合{…},
整數(shù)集合{…},分?jǐn)?shù)集合{…},
非負(fù)整數(shù)集合{-}.
3.北京某一天記錄的溫度是:上午一1℃,中午4℃,晚上一3℃,(0℃以上溫度記為正數(shù)),其中溫度最
高是(寫度數(shù)),最低是(寫度數(shù)).
4.某班在班際籃球賽中,第一場(chǎng)贏4分,第二場(chǎng)輸3分,第三場(chǎng)贏2分,第四場(chǎng)輸2分,成果這個(gè)班是贏
了還是輸了?請(qǐng)用有理數(shù)表達(dá)各場(chǎng)的得分和最終的總分。
鞏固c:
假如用m表達(dá)一種有理數(shù),那么一m是()
A.負(fù)數(shù)B.正數(shù)C.零D.以上答案均有也許對(duì)
第4課時(shí)
內(nèi)容:1.2有理數(shù)
[教學(xué)目日釗
1.正我有理數(shù)的概念,會(huì)對(duì)有理數(shù)按照一定的原則進(jìn)行分類,培養(yǎng)分類能力;
2.理解分類的原則與分類成果的有關(guān)性,初步理解“集合”的含義;
3.體驗(yàn)分類是數(shù)學(xué)上時(shí)常用的處理問題的措施.
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):對(duì)的理解有理數(shù)的概念.
難點(diǎn):對(duì)的理解分類的原則和按照定的原則進(jìn)行分類.
一.知識(shí)回憶和理解
通過兩節(jié)課的學(xué)習(xí),我們已經(jīng)將數(shù)的范圍擴(kuò)大了,那么你能寫出3個(gè)不一樣類的數(shù)嗎?.(3名學(xué)生板書)
[問題1]:我們將這三為同學(xué)所寫時(shí)數(shù)做一下分類.
每名學(xué)生都參照前一
(假如不全,可以補(bǔ)充).
名學(xué)生所寫H勺,盡量寫
[問題2上我們與否可以把上述數(shù)分為兩類?假如可以,應(yīng)分為哪兩類?
不一樣類型H勺,最終有
二.明確概念探究分類
下面同學(xué)補(bǔ)充.
正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù).
在問題2中學(xué)生說出
整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)
[問題3]:上面的分類原則是什么?我們還可以按其他原則分類嗎?
,正整數(shù)
正有理數(shù)
正分?jǐn)?shù)
有理零
,負(fù)整數(shù)
負(fù)有理數(shù)
、負(fù)分?jǐn)?shù)
教師可以按整數(shù)和分?jǐn)?shù)的
三.練一練熟能生巧
分類原則畫出構(gòu)造圖..而問題
1.任意寫出三個(gè)數(shù),標(biāo)出每個(gè)數(shù)的所屬類型,同桌互相驗(yàn)證.
2.把下列各數(shù)填入它所屬于的集合的圈內(nèi):
在練習(xí)2中,首先要解釋集合H勺含義.練
習(xí)2中可補(bǔ)充思索:四個(gè)集合合并在一起是
[小結(jié)]
到目前為止我們學(xué)過的數(shù)是有理數(shù)(圓周率“除),有理數(shù)可以按不一樣的原則進(jìn)行分類,原則不一
樣步,分類的成果也不一樣.
[作業(yè)]
必做題:教科書第8頁練習(xí).P14T1.2
作業(yè)2.把下列給數(shù)填在對(duì)應(yīng)的大括號(hào)里:
3
-4,0.001,0,-1.7,15,+-.
2
這里可以提到無限不循環(huán)小數(shù)H勺問
正數(shù)集合{…},負(fù)數(shù)集合{…},
題.并特殊指明我們此前所見到H勺數(shù)中,
口右TT其一孑也狂礎(chǔ)胡R次其右鋪胡彳日
正整數(shù)集合{…},分?jǐn)?shù)集合{…}
[備選題]
1.下列各數(shù),哪些是整數(shù)?哪些是分?jǐn)?shù)?哪些是正數(shù)?哪些是負(fù)數(shù)?
r11,2
+7,-5,7-,--,79,0,0.67,-l-,+5.1
263------------------------------------------------
2.0是整數(shù)嗎?自然數(shù)一定是整數(shù)嗎?0—定是正整數(shù)嗎?作業(yè)2意在使學(xué)生熟悉集合日勺另一種表
整數(shù)一定是自然數(shù)嗎?
3.圖中兩個(gè)圓圈分別表達(dá)正整數(shù)集合和整數(shù)集合,請(qǐng)寫
并填入兩個(gè)圓圈的重疊部分.你能說出這個(gè)重疊部分表達(dá)什運(yùn)用此題明確自然數(shù)的范圍.0是自然
么數(shù)的集合嗎?數(shù).這點(diǎn)可以在前面日勺教學(xué)中出現(xiàn).
Q廝縣一軸坯安翱后一出姓塞nTP/
第5課時(shí)
內(nèi)容:1.2有理數(shù)
[教學(xué)目的]
1.掌握數(shù)軸的概念,理解數(shù)軸上時(shí)點(diǎn)和有理數(shù)的對(duì)應(yīng)關(guān)系;
2.會(huì)對(duì)的地畫出數(shù)軸,會(huì)用數(shù)軸上的點(diǎn)表達(dá)給定的有理數(shù),會(huì)根據(jù)數(shù)軸上時(shí)點(diǎn)讀出所示的有理數(shù);
3.感受在特定的條件下數(shù)與形是可以互相轉(zhuǎn)化時(shí),體驗(yàn)生活中的數(shù)學(xué).
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):數(shù)軸的概念和用數(shù)軸上時(shí)點(diǎn)表達(dá)有理數(shù).
難點(diǎn)洞上.
一.創(chuàng)設(shè)情境引入新知
觀測(cè)屏幕上的溫度計(jì),讀出溫度..(3個(gè)溫度分別是零上,零,零下)
[問題1]:在一條東西向日勺馬路上,有一種汽車站,汽車站東3m和
問題1先給出情境,學(xué)生
7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一
觀測(cè),思索,研究,表達(dá).
棵槐樹和一根電線桿,試畫圖表達(dá)這一情境.(分組討論,交流合作,動(dòng)手
增強(qiáng)學(xué)生H勺合作意識(shí).
操作)
二.合作交流探究新知
通過剛剛的操作,我們總結(jié)一下,用一條直線表達(dá)有理數(shù),這條直線必
須滿足什么條件?(原點(diǎn),單位長(zhǎng)度,正方向,說出含義就可以)游戲H勺目的是使學(xué)生明白
[小游戲]:在一條直線上的同學(xué)站起來,我們規(guī)定原點(diǎn),正方向,單數(shù)與點(diǎn)日勺對(duì)應(yīng)關(guān)系,并懂
位長(zhǎng)度,按老師發(fā)的數(shù)字口令回答“到”游戲前可先不加任何條件,游
戲中發(fā)現(xiàn)問題,進(jìn)行彌補(bǔ).
總結(jié)游戲,明確用直線表達(dá)有理數(shù)的規(guī)定,提出數(shù)軸的概念和規(guī)定(教科書第11頁).
三.動(dòng)手動(dòng)腦學(xué)用新知
1.你能舉出生活中用直線表達(dá)數(shù)的實(shí)際例子嗎?(溫度計(jì),測(cè)量尺,電視音量,量杯容量標(biāo)志,血壓計(jì)等).
2.畫一種數(shù)軸,觀測(cè)原點(diǎn)左側(cè)是什么數(shù),原點(diǎn)右側(cè)是什么數(shù)?每個(gè)數(shù)到原點(diǎn)的距離是多少?
四.反復(fù)演習(xí)掌握新知
明確數(shù)軸口勺對(duì)H勺畫法和規(guī)定.
教科書12練習(xí).畫出數(shù)軸并表達(dá)下列有理數(shù):
練習(xí)中注意糾正學(xué)生教軸畫法
92
1.5,-2.2,-2.5,—,-----,0.
23
2.寫出數(shù)軸上點(diǎn)A,B,C,D,E所示的數(shù):
EBACD
-3-2-1O12
總結(jié)可以由教師提出問題,學(xué)
1..[小結(jié)]
2.數(shù)軸需要滿足什么樣日勺條件;
3.數(shù)軸的作用是什么?
[作業(yè)]
義做題.:教科書第15頁習(xí)題5.6.7
312
1.在數(shù)軸上,表達(dá)數(shù)-3,2.6,--,0,4-,-2-1-1時(shí)
5332題也可以啟發(fā)學(xué)生反過來想,即點(diǎn)
點(diǎn)中,在原點(diǎn)左邊的點(diǎn)有一個(gè).
A向正方向移動(dòng)1.5個(gè)單位.
3題有一定H勺難度,兩次變動(dòng)可轉(zhuǎn)化
2.在數(shù)軸上點(diǎn)A表達(dá)-4,假如把原點(diǎn)0向負(fù)方向移動(dòng)1.5個(gè)單位,那么在新數(shù)軸上點(diǎn)A表達(dá)日勺數(shù)是
)
c1cl
A.-5-B.-4C.-2-D.2-
222
3.(1)(請(qǐng)先在頭腦中想象點(diǎn)的移動(dòng),嘗試處理下面問題,然后再畫圖解答)一種點(diǎn)在數(shù)軸上表達(dá)時(shí)數(shù)是-5,
這個(gè)點(diǎn)先向左邊移動(dòng)3個(gè)單位,然后再向右邊移動(dòng)6個(gè)單位,這時(shí)它表達(dá)的數(shù)是多少呢?假如按上面的移
動(dòng)規(guī)律,最終得到的點(diǎn)是2,則開始時(shí)它表達(dá)什么數(shù)?
(2)你覺得數(shù)軸上時(shí)點(diǎn)表達(dá)數(shù)的大小與點(diǎn)的位置有關(guān)嗎?為何?
第6課時(shí)
內(nèi)容:1.2有理數(shù)
[教學(xué)目的]
1.借助數(shù)軸,使學(xué)生理解相反數(shù)的概念
2.會(huì)求一種有理數(shù)的相反數(shù)
3.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)日勺愛好.
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):理解相反數(shù)的意義
難點(diǎn):理解相反數(shù)日勺意義
提問
數(shù)軸的三要素是什么?
填空:
數(shù)軸上與原點(diǎn)的距離是2時(shí)點(diǎn)有個(gè),這些點(diǎn)表達(dá)時(shí)數(shù)是;與原點(diǎn)的距離是5時(shí)點(diǎn)有
個(gè),這些點(diǎn)表達(dá)時(shí)數(shù)是。
相反數(shù)的概念:
(1)只有符號(hào)不一樣的兩個(gè)數(shù),我們稱它們互為相反數(shù),零時(shí)相反數(shù)是零。
(2)概念時(shí)理解:
(3)互為相反數(shù)的兩個(gè)數(shù)分別在原點(diǎn)的兩旁,且到原點(diǎn)的距離相等。
一般地,數(shù)a的相反數(shù)是,不一定是負(fù)數(shù)。
(4)在一種數(shù)的前面添上號(hào),就表達(dá)這個(gè)數(shù)的相反數(shù),如:-3是3的相反數(shù),-a是a的相反數(shù),因
止匕,當(dāng)a是負(fù)數(shù)時(shí),-a是一種正數(shù)
(5)-(-3)是(-3)的相反數(shù),因此-(-3)=3,于是
(6)互為相反數(shù)的兩個(gè)數(shù)之和是0
(7)即假如x與y互為相反數(shù),那么x+y=O;反之,若x+y=O,則x與y互為相反數(shù)
相反數(shù)是指兩個(gè)數(shù)之間的一種特殊的關(guān)系,而不是指一種種類。如:"-3是一種相反數(shù)”這句話是不對(duì)時(shí)。
問題1求下列各數(shù)的相反數(shù):
1a
(1)-5(2)y(3)0(4)-(5)-2b(6)a-b(7)a+2
問題2判斷:
(1)-2是相反數(shù)
(2)-3和+3都是相反數(shù)
(3)-3是3的I相反數(shù)
(4)-3與+3互為相反數(shù)
(5)+3是-3的相反數(shù)
(6)一種數(shù)的相反數(shù)不也許是它自身
問題3化簡(jiǎn)下列各數(shù)中的符號(hào):
(1)(2)-(+5)
(3)-[-(-7)](4)-{+[-(+3)]}
問題4填空:
(1)a-4的I相反數(shù)是,3-x的(相反數(shù)是。
2
(2)—x是______的相反數(shù)。
3
(3)假如-a=-9,那么-a的相反數(shù)是。
問題5填空:
(1)若-(a-5)是負(fù)數(shù),則a-50.
⑵若是負(fù)數(shù),則x+y0.
問題6已知a、b在數(shù)軸上的位置如圖所示。
(1)在數(shù)軸上作出它們的相反數(shù);
(2)用按從小到大的次序?qū)⑦@四個(gè)數(shù)連接起來。
---1---------1---1>
b0a------------------
小節(jié):相反數(shù)H勺概念及
問題7假如a-5與a互為相反數(shù),求a.
注意事項(xiàng)
練習(xí):教材15頁T3、4-----------------------------------
第7課時(shí)
內(nèi)容:1.2.有理數(shù)
教學(xué)目的
1,掌握相反數(shù)的概念,深入理解數(shù)軸上時(shí)點(diǎn)與數(shù)的對(duì)應(yīng)關(guān)系;
通過歸納相反數(shù)在數(shù)軸上所示的點(diǎn)的特性,培養(yǎng)歸納能力;
3.體驗(yàn)數(shù)形結(jié)合日勺思想。
教學(xué)難點(diǎn)
歸納相反數(shù)在數(shù)軸上表達(dá)時(shí)點(diǎn)的特性
知識(shí)重點(diǎn)
相反數(shù)的概念
教學(xué)過程(師生活動(dòng))
設(shè)置情境,引入課題
2,問題1:請(qǐng)將下列4個(gè)數(shù)提成兩類,并說出為何要這樣分類
—2,—5,+2
容許學(xué)生有不一樣的分法,只要能說出道理,都要難予鼓勵(lì),但教師要做合適的引導(dǎo),逐漸得出5和一5,
+2和一2分別歸類是具有較特性H勺分法。
(引導(dǎo)學(xué)生觀測(cè)與原點(diǎn)的距離)
思索結(jié)論:教科書第13頁的思索
再換2個(gè)類似的數(shù)試一試。
歸納結(jié)論:教科書第13頁的歸納
深化主題提煉定義
給出相反數(shù)的定義
問題2:你怎樣理解相反數(shù)定義中的“只有符號(hào)不一樣”和“互為”一詞的含義?零的相反數(shù)是什么?
為何?
學(xué)生思索討論交流,教師歸納總結(jié)。
規(guī)律:一般地,數(shù)a時(shí)相反數(shù)可以表達(dá)為一a
思索:數(shù)軸上表達(dá)相反數(shù)的兩個(gè)點(diǎn)和原點(diǎn)有什么關(guān)系?
練一練:教科書第14頁第一種練習(xí)
給出規(guī)律處理問題
問題3:-(+5)和一(一5)分別表達(dá)什么意思?你能化簡(jiǎn)它們嗎?
學(xué)生交流。
分別表達(dá)+5和-5的相反數(shù)是一5和+5
運(yùn)用相反數(shù)的概念得出求一種數(shù)
1,練一練:教科書第15頁T8必如匚物曲如舞
的相反數(shù)的措施
2,課堂小結(jié)
相反數(shù)日勺定義
互為相反數(shù)的數(shù)在數(shù)軸上表達(dá)的點(diǎn)的特性
怎樣求一種數(shù)的相反數(shù)?怎樣表達(dá)一種數(shù)日勺相反數(shù)?
本課作業(yè)
1,必做題教科書第15頁習(xí)題9、10題
選做題教師自行安排
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改善設(shè)想)
反思:
1、相反數(shù)的概念使有理數(shù)的各個(gè)運(yùn)算法則輕易表述,也揭示了兩個(gè)特殊數(shù)的特性.這
兩個(gè)特殊數(shù)在數(shù)量上具有相似的絕對(duì)值,它們的和為零,在數(shù)軸上表達(dá)時(shí),離開原點(diǎn)的
2.4絕
距離相等等性質(zhì)均有廣泛的應(yīng)用.因此本教學(xué)設(shè)計(jì)圍繞數(shù)量和幾何意義展開,滲透數(shù)形
對(duì)值
結(jié)合的思想.
(1)
2、教學(xué)引人以開放式的問題人手,培養(yǎng)學(xué)生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上
學(xué)習(xí)
目的
1.借助數(shù)軸,理解絕對(duì)值的概念,能求一種有理數(shù)的絕對(duì)值
2.會(huì)運(yùn)用絕對(duì)值比較兩個(gè)有理數(shù)的大小
3.經(jīng)歷將實(shí)際問題數(shù)學(xué)化的過程,感受數(shù)學(xué)與生活的關(guān)系,貫徹?cái)?shù)形結(jié)合的思想
學(xué)習(xí)難點(diǎn)
絕對(duì)值意義的理解
教學(xué)過程
【情景創(chuàng)設(shè)】
小明的家在學(xué)校西邊3km處,小麗的家在學(xué)校東邊2km處。他們上學(xué)所花的時(shí)間與各家到學(xué)校的距離
有什么關(guān)系?
數(shù)軸上表達(dá)一種數(shù)時(shí)點(diǎn)與原點(diǎn)時(shí)距離,叫做這0數(shù)的絕對(duì)值
絕對(duì)值的表達(dá)措施如下:-2的絕對(duì)值是2,記作|-21=2;3的絕對(duì)值是3,記作|3|=3
口答:如圖,你能說出數(shù)軸上A、B、C、D、E、F各點(diǎn)所示的數(shù)的絕對(duì)值
表達(dá)0時(shí)點(diǎn)(原點(diǎn))與原點(diǎn)時(shí)距離是0,因此0的絕對(duì)值是0
總結(jié):從上面的問題中你能找到求一種數(shù)的絕對(duì)值的措施嗎?
【例題精講】問題L求4.-3.5的絕對(duì)值。
活動(dòng)一:以某一小組為數(shù)軸,一位同學(xué)為原點(diǎn),規(guī)定正方向后,請(qǐng)大家思索數(shù)軸上的各位同學(xué)
所代表時(shí)數(shù)是多少?這些數(shù)到原點(diǎn)的距離是多少?絕對(duì)值是幾?
活動(dòng)二:請(qǐng)一位同學(xué)隨便報(bào)一種數(shù),然后點(diǎn)名叫另一位同學(xué)說出它的絕對(duì)值。
思索:正數(shù)企業(yè)和負(fù)數(shù)企業(yè)招聘職工,規(guī)定是通過絕對(duì)值符號(hào)“II”這扇大門后,成果為正就
是正數(shù)企業(yè)職工,成果為負(fù)就是負(fù)數(shù)企業(yè)職工。
(1)負(fù)數(shù)企業(yè)能招到職工嗎?
(2)0能找到工作嗎?
總結(jié):
問題2.比較-3與-6時(shí)絕對(duì)值的大小
練一練:求-3.-0.4.-2時(shí)絕對(duì)值,并用“〈”號(hào)把這些絕對(duì)值連接起來
計(jì)算:①②③④
【拓展提高】
(1)求絕對(duì)值不不小于2時(shí)整數(shù)
(2)絕對(duì)值等于自身時(shí)數(shù)是,絕對(duì)值不小于自身時(shí)數(shù)是.
(3)絕對(duì)值不不小于2.5的非負(fù)整數(shù)是
【知識(shí)鞏固】
1.判斷題
(1)任何一種有理數(shù)的絕對(duì)值都是正數(shù).()
(2)假如一種數(shù)的絕對(duì)值是5,則這個(gè)數(shù)是5()
(3)絕對(duì)值不不小于3的整數(shù)有2,1,0.()
2.填空題
(1)+6的符號(hào)是,絕對(duì)值是-時(shí)符號(hào)是,絕對(duì)值是
6
(2)在數(shù)軸上離原點(diǎn)距離是3時(shí)數(shù)是
(3)絕對(duì)值等于自身時(shí)數(shù)是
(4)絕對(duì)值不不小于2時(shí)整數(shù)是
(5)用“>”、”<”、“="連接下列兩數(shù):
77
I--II—II-3.5-3.5
1111
I0||-0.58|I-5.9|—|-6.2|
(6)數(shù)軸上與表達(dá)1時(shí)點(diǎn)時(shí)距離是2時(shí)點(diǎn)所示的數(shù)有.
(7)計(jì)算|4|+|0|一I—3|=.
3.選擇題
(1)下列說法中,錯(cuò)誤的是()
A+5的絕對(duì)值等于5B絕對(duì)值等于5時(shí)數(shù)是5
C-5的絕對(duì)值是5D+5.-5的絕對(duì)值相等
(2)絕對(duì)值最小的有理數(shù)是()
A.lB.0C.-lD.不存在
(3)絕對(duì)值最小的整數(shù)是()
A.-lB.lC.OD.不存在
(4)絕對(duì)值不不小于3的負(fù)數(shù)的個(gè)數(shù)有()
A.2B.3C.4D.無數(shù)
(5)絕對(duì)值等于自身時(shí)數(shù)有()
A.1個(gè)B.2個(gè)C.4個(gè)D.無數(shù)個(gè)
4.解答題.(1)求下列數(shù)的絕對(duì)值,并用號(hào)把這些絕對(duì)值連接起來.
-1.5,-3.5,2,1.5,-2.75
計(jì)算:
23
|-2|+|3.2|-|-2,5|J+-2--。同
小結(jié):作業(yè):習(xí)題1.4第6.7題
2.3絕對(duì)值(2)
第8課時(shí)
學(xué)習(xí)目的
1.理解有理數(shù)的絕對(duì)值與該數(shù)的關(guān)系,把握絕對(duì)值時(shí)代數(shù)意義
2、會(huì)運(yùn)用絕對(duì)值比較2個(gè)負(fù)數(shù)的大小,理解其中的轉(zhuǎn)化思想[比較負(fù)數(shù)一比較正數(shù)
學(xué)習(xí)難點(diǎn)
絕對(duì)值與相反數(shù)意義的理解,數(shù)形結(jié)合的思想
教學(xué)過程
【情景創(chuàng)設(shè)】
1.說出絕對(duì)值的幾何含義
2.互為相反數(shù)的2個(gè)數(shù)在數(shù)軸上有什么位置關(guān)系
3、書本第23頁,根據(jù)絕對(duì)值與相反數(shù)的意義填空。(做在書上)
二、思索問題:一種數(shù)的絕對(duì)值與這個(gè)數(shù)自身、或與它的相反數(shù)之間有什么關(guān)系?
用符號(hào)表達(dá)為Ia|=
三?問題:求下列各數(shù)的絕對(duì)值
+6,-3,-2.7,0,-2/3,4.3,-8
四.議一議:
互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值有什么關(guān)系?
五.隨堂練習(xí)
①一種數(shù)的絕對(duì)值是它自身,這個(gè)數(shù)是()
A.正數(shù)B.0C.非負(fù)數(shù)D.非正數(shù)
②一種數(shù)的絕對(duì)值是它的相反數(shù),這個(gè)數(shù)是()
A.負(fù)數(shù)B.0C.非負(fù)數(shù)D.非正數(shù)
③什么數(shù)的絕對(duì)值比它自身大?什么數(shù)的絕對(duì)值比它自身?。?/p>
④絕對(duì)值是4的數(shù)有幾種?各是什么?
絕對(duì)值是0的數(shù)有幾種?各是什么?
有無絕對(duì)值是T的數(shù)?為何?
六.討論:兩個(gè)數(shù)比較大小,絕對(duì)值大的那個(gè)數(shù)一定大嗎?
七.做一做
分別找出到原點(diǎn)的距離為3和5的數(shù),并比較它們的大小。
【知識(shí)鞏固】
、選擇題
假如|aj-a,那么()
Aa)0Ba<0Ca^0D
2.下列各數(shù)中,一定互為相反數(shù)的是()
A-(-5)和T-5|B|-5]和|+5|C-(-5)和15|D|a|和|-a|
3.若一種數(shù)不小于它的相反數(shù),則這個(gè)數(shù)是()
A正數(shù)B負(fù)數(shù)C非負(fù)數(shù)D非正數(shù)
4.下列判斷中:(1)負(fù)數(shù)沒有絕對(duì)值;(2)絕對(duì)值最小的有理數(shù)是0;(3)任何數(shù)的絕對(duì)值都是非負(fù)數(shù);
(4)互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等,其中對(duì)的的個(gè)數(shù)有
()A1個(gè)B2個(gè)C3個(gè)D4個(gè)
二、填空題
1.(1)-3-0.5;(2)+(-0,5)+1-0.51(3)-8-12
(4)-5/6-2/3(5)-1-2.7-(-3.32)
2.有理數(shù)a、b在數(shù)軸上如圖,用〉、=或〈填空
(1)ab,(2)a___b,
aob
(3)-a___-b,(4)a___a,
(5)|b|b
3.假如|x|=|-2.5|』ljx=
4、絕對(duì)值不不小于3的整數(shù)有一個(gè),其中最小的一種是一
5.一3|的相反數(shù)是;若鼠|=8,則x=
6.時(shí)相反數(shù)等于它自身,的絕對(duì)值等于它自身.
7、絕對(duì)值不不小于3時(shí)非負(fù)整數(shù)是
8、-3.5的絕對(duì)值的相反數(shù)是.-0.5的相反數(shù)的絕對(duì)值是
9、-3|-|-4=-=..
10、在-,-0.42,-0.43,-中,最大的一種數(shù)是
三、解答題
11.比較-與-aJ大小,并闡明理由.
12.用“〈”將-4,12,,一1-3|連接起來,并闡明理由.
13.已知a、b、c在數(shù)軸上的(位置如圖所示,試求⑸+小-制+⑹時(shí)值.
abe
,II「IIIIIII.
-3-2-10123
課后反思:
2.4有理數(shù)的加法與減法(一)
第9課時(shí)
學(xué)習(xí)目的:1.探索有理數(shù)加法法則,理解有理數(shù)的加法法則;
2.能運(yùn)用有理數(shù)加法法則,對(duì)的進(jìn)行有理數(shù)加法運(yùn)算;
3.經(jīng)歷探索有理數(shù)加法法則的過程,體驗(yàn)數(shù)學(xué)來源于實(shí)踐并為實(shí)踐服務(wù)的思想,同步培養(yǎng)學(xué)生探究性
學(xué)習(xí)的能力.
學(xué)習(xí)難點(diǎn):師生共同合作探索有理數(shù)加法法則的過程及和的符號(hào)確實(shí)定.
一、課堂活動(dòng):
一、有理數(shù)加法的探索
1.汽車在公路上行駛,規(guī)定向東為正,向西為負(fù),據(jù)下列狀況,分別列算式,并回答:汽車兩次運(yùn)動(dòng)
后方向怎樣?離出發(fā)點(diǎn)多遠(yuǎn)?
(1)向東行駛5千米后,又向東行駛2千米,
(2)向西行駛5千米后,又向西行駛2千米,
(3)向東行駛5千米后,又向西行駛2千米,
(4)向西行駛5千米后,又向東行駛2千米,
(5)向東行駛5千米后,又向西行駛5千米,
(6)向西行駛5千米后,靜止不動(dòng),
2.足球隊(duì)甲、乙兩隊(duì)比賽,主場(chǎng)甲隊(duì)4:1勝乙隊(duì),贏了3球,客場(chǎng)甲隊(duì)1:3負(fù)乙隊(duì),
輸了2球,甲隊(duì)兩場(chǎng)比
賽合計(jì)凈勝球1個(gè),你
能把這個(gè)成果用算式
表達(dá)出來嗎?
議一議:比賽中勝敗難凈勝球算式
料,兩場(chǎng)比賽的成果還
也許哪些狀況呢?動(dòng)
動(dòng)手填表:
贏球數(shù)
主場(chǎng)客場(chǎng)
3-2
-32
32
-3-2
30
0-3
你還能舉出某些應(yīng)用有理數(shù)加法的實(shí)際例子嗎?請(qǐng)同學(xué)們積極思索.
二、有理數(shù)加法的歸納
探索:兩個(gè)有理數(shù)相加,和的符號(hào)及絕對(duì)值怎樣確定?你能找到有理數(shù)相加的一般措施嗎?
說一說:兩個(gè)有理數(shù)相加有多少種不一樣的情形?
議一議:在多種情形下,怎樣進(jìn)行有理數(shù)的加法運(yùn)算?
歸納:有理數(shù)加法法則:
①同號(hào)兩數(shù)相加,取相似的符號(hào),并把絕對(duì)值相加.
②異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí),和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕
對(duì)值減去較小的絕對(duì)值.
③一種數(shù)與0相加,仍得這個(gè)數(shù).
三、實(shí)踐應(yīng)用
問題1.計(jì)算
(1)(+8)+(+5)(2)(—8)+(—5)⑶(+8)+(—5)
(4)(-8)+(+5)⑸(-8)+(+8)(6)(+8)+0;
問題2.某次年第三年
企業(yè)三年
的盈利狀
況如下表
所示,規(guī)定
盈利為“+”
(單位:萬
元)
第一年
-24+15.6+42
該企業(yè)前兩年盈利了多少萬元?(2)該企業(yè)三年共盈利多少萬元?
問題3.判斷(1)兩個(gè)有理數(shù)相加,和一定比加數(shù)大.()
(2)絕對(duì)值相等的兩個(gè)數(shù)附和為0.()
(3)若兩個(gè)有理數(shù)的和為負(fù)數(shù),則這兩個(gè)數(shù)中至少有一種是負(fù)數(shù).()
四、課堂反饋:
1.種正數(shù)與種負(fù)數(shù)附和是()
A.正數(shù)B.負(fù)數(shù)C.零D.以上三種狀況均有也許
2.兩個(gè)有理數(shù)的和)
A.一定不小于其中的一種加數(shù)B.一定不不小于其中的一種加數(shù)
C.大小由兩個(gè)加數(shù)符號(hào)決定D、大小由兩個(gè)加數(shù)的符號(hào)及絕對(duì)值而決定
3.計(jì)算(1)(+10)+(-4)(2)(-15)+(-32)(3)(-9)+0
(4)43+(-34)(5)(-10.5)+(+1.3)(6)(--)+-
23
知識(shí)鞏固
一、選擇題
1.若兩數(shù)的和為負(fù)數(shù),則這兩個(gè)數(shù)一定()
A.兩數(shù)同負(fù)B.兩數(shù)一正一負(fù)C.兩數(shù)中一種為0D.以上狀況均有也許
2.兩個(gè)有理數(shù)相加,若它們的和不不小于每一種加數(shù),則這兩個(gè)數(shù)()
A.都是正數(shù)B.都是負(fù)數(shù)C.互為相反數(shù)D.符號(hào)不一樣
3.假如兩個(gè)有理數(shù)的和是正數(shù),那么這兩個(gè)數(shù)()
A.都是正數(shù)B.都是負(fù)數(shù)C.都是非負(fù)數(shù)D.至少有一種正數(shù)
4.使等式|6+R=|6|+W成立的有理數(shù)x是()
A.任意一種整數(shù)B.任意一種非負(fù)數(shù)C.任意一種非正數(shù)D.任意一種有理數(shù)
5.對(duì)于任意的兩個(gè)有理數(shù),下列結(jié)論中成立的是()
A.若a+Z?=0,則a=—bB.若a+Z?>0,則a>0,b>0
C.若a+b<0,則a<Z?<0D.若a+b<0,則a<0
6.下列說法對(duì)時(shí)的是()
A.兩數(shù)之和不小于每一種加數(shù)B.兩數(shù)之和一定不小于兩數(shù)絕對(duì)值的和
C.兩數(shù)之和一定不不小于兩數(shù)絕對(duì)值的和D.兩數(shù)之和一定不不小于兩數(shù)絕對(duì)值的和
二、判斷
1.若某數(shù)比-5大3,則這個(gè)數(shù)的絕對(duì)值為3.()
2.若a>0,b<0,則a+b>0.()
3.若a+b〈0,則a,b兩數(shù)也許有一種正數(shù).()
4.若x+y=0,則Ix|=|y|()
5.有理數(shù)中所有的奇數(shù)之和不小于0.()
三、填空
1.(+5)+(+7)=(-3)+(-8)=
(+3)+(-8)=;(-3)+(-15)=;
0+(-5)=;(-7)+(+7)=.
2.一種數(shù)為-5,另一種數(shù)比它的相反數(shù)大4,這兩數(shù)的和為.
3.(-5)+=-8;+(+4)=-9.
+(+2)=+11;+(+2)=-11;
5.假如則,
四、計(jì)算
(1)(+21)+(-31)(2)(-3.125)+(+3-)(3))+(+-)
832
97
(4)(-3-)+0.3(5)(-22—)+0(6)|-7|+|-9—|
314
五、土星表面夜間的平均氣溫為一150°C,白
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 12古詩三首《示兒》說課稿-2024-2025學(xué)年五年級(jí)語文上冊(cè)統(tǒng)編版001
- 2023六年級(jí)數(shù)學(xué)上冊(cè) 四 人體的奧秘-比說課稿 青島版六三制
- 會(huì)議總包合同范例
- 鋼板橋面面層施工方案
- 供熱公司用工合同范本
- 專業(yè)律師合同范例
- 債務(wù)合約合同范例
- 物業(yè)車輛清潔方案
- 公司聘用文秘合同范例
- 買礦協(xié)議合同范本
- 第八講 發(fā)展全過程人民民主PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 王崧舟:學(xué)習(xí)任務(wù)群與課堂教學(xué)變革 2022版新課程標(biāo)準(zhǔn)解讀解析資料 57
- 招投標(biāo)現(xiàn)場(chǎng)項(xiàng)目經(jīng)理答辯(完整版)資料
- 運(yùn)動(dòng)競(jìng)賽學(xué)課件
- 重大事故隱患整改臺(tái)賬
- 2022年上海市初中畢業(yè)數(shù)學(xué)課程終結(jié)性評(píng)價(jià)指南
- 高考作文備考-議論文對(duì)比論證 課件14張
- 新華師大版七年級(jí)下冊(cè)初中數(shù)學(xué) 7.4 實(shí)踐與探索課時(shí)練(課后作業(yè)設(shè)計(jì))
- 山東省萊陽市望嵐口礦區(qū)頁巖礦
- 《普通生物學(xué)教案》word版
- 安全生產(chǎn)應(yīng)知應(yīng)會(huì)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論