版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省余姚八中2025屆數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.162.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}4.過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為()A. B.C. D.5.如圖,奧運五環(huán)由5個奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍、黑、紅環(huán),下面是黃,綠環(huán),整個造形為一個底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機構定制一批奧運五環(huán)旗,已知該五環(huán)旗的5個奧林匹克環(huán)的內圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.96.正方體的表面積為,則正方體外接球的表面積為(
)A. B.C. D.7.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點,那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.08.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.9.某幾何體的三視圖如圖所示,則其對應的幾何體是A. B.C. D.10.設是周期為2的奇函數(shù),當時,,則()A. B.C. D.11.橢圓的()A.焦點在x軸上,長軸長為2 B.焦點在y軸上,長軸長為2C.焦點在x軸上,長軸長為 D.焦點在y軸上,長軸長為12.若直線與圓相切,則()A. B.或2C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列的前n項和.若,則__________14.已知正數(shù)、滿足,則的最大值為__________15.已知雙曲線C:的一個焦點坐標為,則其漸近線方程為__________16.若雙曲線的左、右焦點為,,直線與雙曲線交于兩點,且,為坐標原點,又,則該雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓心C的坐標為,且是圓C上一點(1)求圓C的標準方程;(2)過點的直線l被圓C所截得的弦長為,求直線l的方程18.(12分)在2021年“雙11”網上購物節(jié)期間,某電商平臺銷售了一款新手機,現(xiàn)在該電商為調查這款手機使用后的“滿意度”,從購買了該款手機的顧客中抽取1000人,每人在規(guī)定區(qū)間內給出一個“滿意度”分數(shù),評分在60分以下的視為“不滿意”,在60分到80分之間(含60分但不含80分)的視為“基本滿意”,在80分及以上的視為“非常滿意”.現(xiàn)將他們的評分按,,,,分成5組,得到如圖所示的頻率分布直方圖.(1)求這1000人中對該款手機“非常滿意”的人數(shù)和“滿意度”評分的中位數(shù)的估計值.(2)若按“滿意度”采用分層抽樣的方法從這1000名被調查者中抽取20人,再從這20人中隨機抽取3人,記這3人中對該款手機“非常滿意”的人數(shù)為X.①寫出X的分布列,并求數(shù)學期望;②若被抽取的這3人中對該款手機“非常滿意”的被調查者將獲得100元話費補貼,其他被調查者將獲得50元話費補貼,請求出這3人將獲得的話費補貼總額的期望.19.(12分)在中,角的對邊分別為,已知,,且.(1)求角的大??;(2)若,面積為,試判斷的形狀,并說明理由.20.(12分)設點P是曲線上的任意一點,k是該曲線在點P處的切線的斜率(1)求k的取值范圍;(2)求當k取最大值時,該曲線在點P處的切線方程21.(12分)如圖,點О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點B到平面APQ的距離:(2)設E為棱PC上的點,且,若直線DE與平面APQ所成角的正弦值為,試求實數(shù)的值22.(10分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當且僅當時取等.故選:B.2、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進行判斷即可【詳解】若的焦距,則;若,則故選:A3、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D4、C【解析】拋物線焦點為,準線方程為,由得或所以,故答案為C考點:1、拋物線的定義;2、直線與拋物線的位置關系5、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C6、B【解析】由正方體表面積求得棱長,再求得正方體的對角線長,即為外接球的直徑,從而可得球表面積【詳解】設正方體棱長為,由得,正方體對角線長,所以其外接球半徑為,球表面積為故選:B7、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A8、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.9、A【解析】根據(jù)三視圖即可還原幾何體.【詳解】根據(jù)三視圖,特別注意到三視圖中對角線的位置關系,容易判斷A正確.【點睛】本題主要考查了三視圖,屬于中檔題.10、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質通過得結論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關于原點對稱的區(qū)間,然后再由奇函數(shù)性質求得函數(shù)值11、B【解析】把橢圓方程化為標準方程可判斷焦點位置和求出長軸長.【詳解】橢圓化為標準方程為,所以,且,所以橢圓焦點在軸上,,長軸長為.故選:B.12、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因為是等差數(shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】是等差數(shù)列,且,設等差數(shù)列的公差根據(jù)等差數(shù)列通項公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項和公式:可得:.故答案:.【點睛】本題主要考查了求等差數(shù)列的前項和,解題關鍵是掌握等差數(shù)列的前項和公式,考查了分析能力和計算能力,屬于基礎題.14、【解析】直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為【點睛】本題考查了均值不等式,意在考查學生的計算能力.15、【解析】根據(jù)雙曲線的定義由焦點坐標求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:16、【解析】根據(jù)直線和雙曲線的對稱性,結合圓的性質、雙曲線的定義、三角形面積公式、雙曲線離心率公式進行求解即可.【詳解】由直線與雙曲線的對稱性可知,點與點關于原點對稱,在三角形中,,所以,是以為直徑的圓與雙曲線的交點,不妨設在第一象限,,因為圓是以為直徑,所以圓的半徑為,因為點在圓上,也在雙曲線上,所以有,聯(lián)立化簡可得,整理得,,所以,由所以,又因為,聯(lián)立可得,,因為為圓的直徑,所以,即,,所以離心率.故答案為:【點睛】關鍵點睛:利用直線和雙曲線的對稱性,結合圓的性質進行求解是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)計算圓的半徑,寫出圓的標準方程即可;(2)先驗證斜率不存在時,是否滿足題意,再分析斜率存在時,利用點到直線距離求出斜率即可得解.【小問1詳解】由題意得:所以,圓C的標準方程為【小問2詳解】當直線l斜率不存在時,直線l的方程為,此時所截得的線段的長為,符合題意當直線l的斜率存在時,設l的方程為,即,圓心到直線l的距離,由題意,得,解得,∴直線l的方程為,即綜上,直線l的方程為或18、(1)65分(2)①分布列答案見解析,數(shù)學期望:;②172.5元【解析】(1)由圖可知中位數(shù)在第二組,則設中位數(shù)為,從而得,解方程可得答案,(2)①由題意可求得“不滿意”與“基本滿意”的用戶應抽取17人,“非常滿意”的用戶應抽取3人,則X的可能取值分別為0,1,2,3,然后求出對應的概率,從而可求得其分布列和期望,②設這3人獲得的話費補貼總額為Y,則,然后由①結合期望的性質可求得答案【小問1詳解】這1000人中對該款手機“非常滿意”的人數(shù)為.由頻率分布直方圖可得,得分的中位數(shù)為,則,解得,所以中位數(shù)為65分.【小問2詳解】①若按“滿意度”采用分層抽樣的方法從這1000名被調查者中抽取20人,則“不滿意”與“基本滿意”的用戶應抽取人,“非常滿意”的用戶應抽取人,X的可能取值分別為0,1,2,3,,,,,則X的分布列為X0123P故.②設這3人獲得的話費補貼總額為Y,則(元),所以元,故這3人將獲得的話費補貼總額的期望為172.5元.19、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯(lián)立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應用,考查方程思想與運算求解能力,屬于中檔題20、(1)(2)【解析】(1)先求導數(shù)再求最值即可求解答案;(2)由(1)確定切點,從而也確定的斜率就可以求切線.【小問1詳解】設,因為,所以,所以k的取值范圍為【小問2詳解】由(1)知,此時,即,所以此時曲線在點P處的切線方程為21、(1)(2)或【解析】(1)以三棱錐等體積法求點到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可以列關于的方程,解之即可.【小問1詳解】點О是正四棱錐底面中心,點О是BD的中點,四邊形PQDO矩形,,兩點到平面APQ的距離相等.正四棱錐中,平面,平面,,,設點B到平面APQ的距離為d,則,即解之得,即點B到平面APQ的距離為【小問2詳解】取PC中點N,連接BN、ON、DN,則.平面平面正四棱錐中,,直線平面平面,平面平面,平面平面平面中,點E到直線ON的距離即為點E到平面的距離.中,,點P到直線ON的距離為△中,,設點E到平面的距離為d,則有,則則有,整理得,解之得或22、(1)略;(2)【解析】(1)推導出BD⊥BC,PB⊥BC,從而BC⊥平面PBD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版泥工施工環(huán)保評估及監(jiān)測服務合同2篇
- 中小企業(yè)綠色環(huán)保生產技術改造2025年實施合同
- 二零二五年度新型農民合作社成員入社合同范本
- 二零二五年度摩托車行業(yè)技術交流合作合同
- 山東省17地市2013一模語文分解-文學類文本閱讀
- 2025年度個人獨資企業(yè)股權買賣合同模板
- 二零二五年度真石漆施工項目風險評估與管理合同2篇
- 二零二五年度程序員入職心理健康關愛與支持合同4篇
- 二零二五年度儲藏煤場租賃合同附煤炭儲存環(huán)境影響評估4篇
- 二零二五版某某金融資產證券化項目補充合同3篇
- 蝦皮shopee新手賣家考試題庫及答案
- 四川省宜賓市2023-2024學年八年級上學期期末義務教育階段教學質量監(jiān)測英語試題
- 價值醫(yī)療的概念 實踐及其實現(xiàn)路徑
- 2024年中國華能集團燃料有限公司招聘筆試參考題庫含答案解析
- 《紅樓夢》中的男性形象解讀
- 安全生產技術規(guī)范 第49部分:加油站 DB50-T 867.49-2023
- 《三國演義》中的語言藝術:詩詞歌賦的應用
- 腸外營養(yǎng)液的合理配制
- 消防安全教育培訓記錄表
- 2023年河南省新鄉(xiāng)市鳳泉區(qū)事業(yè)單位招聘53人高頻考點題庫(共500題含答案解析)模擬練習試卷
- 2023年小升初簡歷下載
評論
0/150
提交評論