2025屆吉林省吉林市長春汽車經濟開發(fā)區(qū)第六中學高二上數學期末學業(yè)水平測試試題含解析_第1頁
2025屆吉林省吉林市長春汽車經濟開發(fā)區(qū)第六中學高二上數學期末學業(yè)水平測試試題含解析_第2頁
2025屆吉林省吉林市長春汽車經濟開發(fā)區(qū)第六中學高二上數學期末學業(yè)水平測試試題含解析_第3頁
2025屆吉林省吉林市長春汽車經濟開發(fā)區(qū)第六中學高二上數學期末學業(yè)水平測試試題含解析_第4頁
2025屆吉林省吉林市長春汽車經濟開發(fā)區(qū)第六中學高二上數學期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省吉林市長春汽車經濟開發(fā)區(qū)第六中學高二上數學期末學業(yè)水平測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是雙曲線與圓在第一象限的交點,,分別是雙曲線的左,右焦點,若,則雙曲線的離心率為()A. B.C. D.2.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形3.在數列中,,,,則()A.2 B.C. D.14.已知是數列的前項和,,則數列是()A.公比為3的等比數列 B.公差為3的等差數列C.公比為的等比數列 D.既非等差數列,也非等比數列5.1852年英國來華傳教士偉烈亞力將《孫子算經》中“物不知數”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現有這樣一個問題:將1到200中被3整除余1且被4整除余2的數按從小到大的順序排成一列,構成數列,則=()A.130 B.132C.140 D.1446.在正方體中中,,若點P在側面(不含邊界)內運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.7.記為等差數列的前n項和,有下列四個等式,甲:;乙:;丙:;丁:.如果只有一個等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁8.若某群體中的成員只用現金支付的概率為,既用現金支付也用非現金支付的概率為,則不用現金支付的概率為()A. B.C. D.9.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.10.拋物線的焦點到準線的距離是A.2 B.4C. D.11.已知等比數列的公比為q,且,則“”是“是遞增數列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.設各項均為正項的數列滿足,,若,且數列的前項和為,則()A. B.C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前項和,則該數列的首項__________,通項公式__________.14.已知函數有且僅有兩個不同的零點,則實數的取值范圍是__________.15.某天上午只排語文、數學、體育三節(jié)課,則體育不排在第一節(jié)課的概率為_________16.設實數x,y滿足,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某城鎮(zhèn)為推進生態(tài)城鎮(zhèn)建設,對城鎮(zhèn)的生態(tài)環(huán)境、市容市貌等方面進行了全面治理,為了解城鎮(zhèn)居民對治理情況的評價和建議,現隨機抽取了200名居民進行問卷并評分(滿分100分),將評分結果制成如下頻率分布直方圖,已知圖中a,b,c成等比數列,且公比為2(1)求圖中a,b,c的值,并估計評分的均值(各段分數用該段中點值作代表);(2)根據統(tǒng)計數據,在評分為“50~60”和“80~90”的居民中用分層抽樣的方法抽取了6個居民.若從這6個居民中隨機選擇2個參加座談,求所抽取的2個居民中至少有1個評分在“80~90”的概率18.(12分)某校高三年級進行了一次數學測試,全年級學生的成績都落在區(qū)間內,其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區(qū)間內的人數為36人,請估計該校高三學生的人數19.(12分)如圖,在四棱錐P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD為正方形,M、N、Q分別為AD、PD、BC的中點(1)證明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值20.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍21.(12分)已知橢圓的離心率為,右焦點為F,點A(a,0),且|AF|=1(1)求橢圓C的方程;(2)過點F的直線l(不與x軸重合)交橢圓C于點M,N,直線MA,NA分別與直線x=4交于點P,Q,求∠PFQ的大小22.(10分)如圖所示的四棱錐的底面是一個等腰梯形,,且,是△的中線,點E是棱的中點(1)證明:∥平面(2)若平面平面,且,求平面與平面夾角余弦值(3)在(2)條件下,求點D到平面的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先由雙曲線定義與題中條件得到,,求出,,再由題意得到,即可根據勾股定理求出結果.【詳解】解:根據雙曲線定義:,,∴,∴,,,∴是圓的直徑,∴,中,,得故選【點睛】本題主要考查求雙曲線的離心率,熟記雙曲線的簡單性質即可,屬于常考題型.2、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C3、A【解析】根據題中條件,逐項計算,即可得出結果.【詳解】因為,,,所以,因此.故選:A.4、D【解析】由得,然后利用與的關系即可求出【詳解】因為,所以所以當時,時,所以故數列既非等差數列,也非等比數列故選:D【點睛】要注意由求要分兩步:1.時,2.時.5、A【解析】分析數列的特點,可知其是等差數列,寫出其通項公式,進而求得結果,【詳解】被3整除余1且被4整除余2的數按從小到大的順序排成一列,這樣的數構成首項為10,公差為12的等差數列,所以,故,故選:A6、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側面(不含邊界)內運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A7、D【解析】分別假設甲、乙、丙、丁不成立,驗證得到答案【詳解】設數列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.8、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現金支付的概率為.故選:A.9、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C10、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準線的距離是,故選D.考點:1、拋物線的標準方程;2、拋物線的幾何性質.11、B【解析】利用充分條件和必要條件的定義結合等比數列的性質分析判斷【詳解】當時,則,則數列為遞減數列,當是遞增數列時,,因為,所以,則可得,所以“”是“是遞增數列”的必要不充分條件,故選:B12、D【解析】由利用因式分解可得,即可判斷出數列是以為首項,為公差的等差數列,從而得到數列,數列的通項公式,進而求出【詳解】等價于,而,所以,即可知數列是以為首項,為公差的等差數列,即有,所以,故故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.;②..【解析】空一:利用代入法直接進行求解即可;空二:利用之間的關系進行求解即可.【詳解】空一:;空二:當時,,顯然不適合上式,所以,故答案為:;14、【解析】函數有兩個不同零點即y=a與g(x)=圖像有兩個交點,畫出近似圖象即得a的范圍﹒【詳解】∵函數有且僅有兩個不同的零點,令,則y=a與g(x)=圖像有兩個交點,∵,∴當時,,單調遞減,當時,,單調遞增,∴當時,,作出函數與的圖象,∴當時,y=a與g(x)有兩個交點﹒故答案為:﹒15、【解析】寫出語文、數學、體育的所有可能排列,找出其中體育不排在第一節(jié)課的情況,利用概率公式計算即可.【詳解】所有可能結果如下:(語文,數學,體育);(語文,體育,數學);(數學,語文,體育):(數學,體育,語文);(體育,語文,數學);(體育,數學,語文),其中體育不排在第一節(jié)課的情況有四種,則體育不排在第一節(jié)課的概率16、5【解析】畫出可行域,利用目標函數的幾何意義即可求解【詳解】畫出可行域和目標函數如圖所示:根據平移知,當目標函數經過點時,有最小值為5.故答案為:5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,,均值為65.6(2)【解析】(1)根據a,b,c成等比數列且公比為2,得到a,b,c的關系,利用頻率之和為1,求出a,b,c,估計評分的均值;(2)利用列舉法得到基本事件,求出相應的概率.【小問1詳解】由題意得,,,有,所以,即,解得,于是,評分在40~50,50~60,60~70,70~80,80~90,90~100的概率分別為0.15,0.20,0.30,0.20,0.10,0.05,則均分估計值為【小問2詳解】評分在“50~60”和“80~90”分別有40人和20人則所抽取的6個居民中,評分在“80~90”一組有2人,記為A1,A2,評分在“50~60”一組4人,記為B1,B2,B3,B4從這6人中選取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15個其中至少有1個評分在“80~90”的基本事件有9個則所求的概率,即抽取的2個居民中至少有1個評分在“80~90”的概率為18、(1)(2)人【解析】(1)由頻率分布直方圖的性質求得,結合,即可求得的值;(2)由頻率分布直方圖求得落在區(qū)間內的概率,進而求得該校高三年級的人數【小問1詳解】解:由頻率分布直方圖的性質,可得:,可得,又由,可得解得;【小問2詳解】解:由頻率分布直方圖可得,成績落在區(qū)間內的概率為,則該校高三年級的人數為(人)19、(1)證明過程見解析(2)【解析】(1)由線線平行證明線面平行;(2)建立空間直角坐標系,利用空間向量進行求解二面角的余弦值.【小問1詳解】因為M,N是DA,PD的中點,所以MN//AP,因為平面PAQ,平面PAQ,所以MN//平面PAQ因為四邊形ABCD為正方形,且Q為BC中點,所以MA//CQ,且MA=CQ,所以四邊形MAQC為平行四邊形,所以CM//AQ,因為平面PAQ,平面PAQ,所以MC//平面PAQ,因為,所以面PAQ//面MNC【小問2詳解】因為PD⊥CD,PD⊥AD,AD⊥CD故以D為坐標原點,DA所在直線為x軸,DC所在直線為y軸,DP所在直線為z軸建立空間直角坐標系,則,,,設平面NMC的法向量為,則,令得:,所以,平面NDC的法向量為,則,設二面角M-NC-D的大小為,顯然為銳角,則20、(1)(2)【解析】(1)根據橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯立,整理得根與系數的關系,利用直線方程求出點S、T的坐標,再根據確定的表達式,將根與系數的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當直線l的傾斜角為銳角時,設,設直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍是21、(1)(2)∠PFQ=90°【解析】(1)由題意得求出a,c,然后求解b,即可得到橢圓方程(2)當直線l的斜率不存在時,驗證,即∠PFQ=90°.當直線l的斜率存在時,設l:y=k(x﹣1),其中k≠0.聯立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由題意,知Δ>0恒成立,設M(x1,y1),N(x2,y2),利用韋達定理,結合直線MA的方程為.求出、.利用向量的數量積,轉化求解即可【小問1詳解】由題意得解得a=2,c=1,從而,所以橢圓C的方程為【小問2詳解】當直線l的斜率不存在時,有,,P(4,﹣3),Q(4,3),F(1,0),則,,故,即∠PFQ=90°當直線l的斜率存在時,設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論