版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若將一個(gè)橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),這樣的橢圓稱為“對(duì)偶橢圓”,下列橢圓中是“對(duì)偶橢圓”的是()A. B.C. D.2.對(duì)于函數(shù),下列說(shuō)法正確的是()A.的單調(diào)減區(qū)間為B.設(shè),若對(duì),使得成立,則C.當(dāng)時(shí),D.若方程有4個(gè)不等的實(shí)根,則3.關(guān)于的不等式的解集為,則關(guān)于的不等式的解集為A. B.C. D.4.命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則5.設(shè)分別是橢圓的左、右焦點(diǎn),P是C上的點(diǎn),則的周長(zhǎng)為()A.13 B.16C.20 D.6.?dāng)?shù)列,則是這個(gè)數(shù)列的第()A.項(xiàng) B.項(xiàng)C.項(xiàng) D.項(xiàng)7.已知拋物線x2=4y上有一條長(zhǎng)為6的動(dòng)弦AB,則AB的中點(diǎn)到x軸的最短距離為()A. B.C.1 D.28.已知向量,,且,則的值為()A. B.C.或 D.或9.某公司要建造一個(gè)長(zhǎng)方體狀的無(wú)蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價(jià)為15元,箱壁每1m2造價(jià)為12元,則箱子的最低總造價(jià)為()A.72元 B.300元C.512元 D.816元10.19世紀(jì)法國(guó)著名數(shù)學(xué)家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學(xué),推動(dòng)了空間幾何學(xué)的獨(dú)立發(fā)展,提出了著名的蒙日?qǐng)A定理:橢圓的兩條切線互相垂直,則切線的交點(diǎn)位于一個(gè)與橢圓同心的圓上,稱為蒙日?qǐng)A,且該圓的半徑等于橢圓長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的平方和的算術(shù)平方根.若圓與橢圓的蒙日?qǐng)A有且僅有一個(gè)公共點(diǎn),則b的值為()A. B.C. D.11.已知F為橢圓的右焦點(diǎn),A為C的右頂點(diǎn),B為C上的點(diǎn),且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.12.已知集合M={0,x},N={1,2},若M∩N={2},則M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能確定二、填空題:本題共4小題,每小題5分,共20分。13.橢圓與雙曲線有公共焦點(diǎn),設(shè)橢圓與雙曲線在第一象限內(nèi)交于點(diǎn),橢圓與雙曲線的離心率分別為為坐標(biāo)原點(diǎn),,則的取值范圍是___________.14.已知P,A,B,C四點(diǎn)共面,對(duì)空間任意一點(diǎn)O,若,則______.15.已知橢圓的左、右焦點(diǎn)分別為,若橢圓上的點(diǎn)P滿足軸,,則該橢圓的離心率為_(kāi)__________16.阿基米德(公元前287—公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.已知橢圓經(jīng)過(guò)點(diǎn),則當(dāng)取得最大值時(shí),橢圓的面積為_(kāi)________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)蒙古包是蒙古族牧民居住的一種房子,建造和搬遷都很方便,適于游牧生活.其結(jié)構(gòu)如圖所示,上部分是側(cè)棱長(zhǎng)為3的正六棱錐,下部分是高為1的正六棱柱,分別為正六棱柱上底面與下底面的中心.(1)若長(zhǎng)為,把蒙古包的體積表示為的函數(shù);(2)求蒙古包體積的最大值.18.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動(dòng)點(diǎn).(1)當(dāng)時(shí),求證平面;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.19.(12分)已知?jiǎng)訄A過(guò)點(diǎn)且動(dòng)圓內(nèi)切于定圓:記動(dòng)圓圓心的軌跡為曲線.(1)求曲線方程;(2)若、是曲線上兩點(diǎn),點(diǎn)滿足求直線的方程.20.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點(diǎn)到平面的距離.21.(12分)已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為3,直線與拋物線交于,兩點(diǎn),為坐標(biāo)原點(diǎn)(1)求拋物線的方程;(2)求的面積.22.(10分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為.若,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進(jìn)而判斷所給命題的真假【詳解】解:因?yàn)闄E圓短的軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:2、B【解析】函數(shù),,,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設(shè)函數(shù)的值域?yàn)?,函?shù),的值域?yàn)椋魧?duì),,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個(gè)不等的實(shí)根,則,且時(shí),有2個(gè)不等的實(shí)根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時(shí),,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設(shè)函數(shù)的值域?yàn)椋瘮?shù),的值域?yàn)椋瑢?duì),,.,,由,若對(duì),,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當(dāng)時(shí),,即,因此C不正確;D.方程有4個(gè)不等的實(shí)根,則,且時(shí),有2個(gè)不等的實(shí)根,結(jié)合圖象可知,因此D不正確故選:B3、B【解析】設(shè),解集為所以二次函數(shù)圖像開(kāi)口向下,且與交點(diǎn)為,由韋達(dá)定理得所以的解集為,故選B.4、C【解析】根據(jù)逆否命題的定義寫出逆否命題即得【詳解】解:以否定的結(jié)論作條件、否定的條件作結(jié)論得出的命題為原命題的逆否命題,即“若,則”的逆否命題是“若,則”故選:C5、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長(zhǎng)為.故選:B6、A【解析】根據(jù)數(shù)列的規(guī)律,求出通項(xiàng)公式,進(jìn)而求出是這個(gè)數(shù)列的第幾項(xiàng)【詳解】數(shù)列為,故通項(xiàng)公式為,是這個(gè)數(shù)列的第項(xiàng).故選:A.7、D【解析】由題意知,拋物線的準(zhǔn)線l:y=-1,過(guò)A作AA1⊥l于A1,過(guò)B作BB1⊥l于B1,設(shè)弦AB的中點(diǎn)為M,過(guò)M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點(diǎn)),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.8、C【解析】根據(jù)空間向量平行的性質(zhì)得,代入數(shù)值解方程組即可.【詳解】因?yàn)?,所以,所以,所以,解得?故選:C.9、D【解析】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價(jià)【詳解】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當(dāng)且僅當(dāng)x,即x=4時(shí),f(x)取最小值816元故選:D10、B【解析】由題意求出蒙日?qǐng)A方程,再由兩圓只有一個(gè)交點(diǎn)可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日?qǐng)A的半徑,所以蒙日?qǐng)A方程為,因?yàn)閳A與橢圓的蒙日?qǐng)A有且僅有一個(gè)公共點(diǎn),所以兩圓相切,所以,解得,故選:B11、D【解析】根據(jù)題意表示出點(diǎn)的坐標(biāo),再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當(dāng)時(shí),,得,由題意可得點(diǎn)在第一象限,所以,因?yàn)橹本€AB的斜率為,所以,化簡(jiǎn)得,所以,,得(舍去),或,所以離心率,故選:D12、C【解析】集合M={0,x},N={1,2},若M∩N={2},則.所以.故選C.點(diǎn)睛:集合的交集即為由兩個(gè)集合的公共元素組成的集合,集合的并集即由兩集合的所有元素組成.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)橢圓和雙曲線得定義求得,再根據(jù),可得,從而有,求出的范圍,根據(jù),結(jié)合基本不等式即可得出答案.【詳解】解:設(shè),則有,所以,即,又因?yàn)?,所以,所以,即,則,由,得,所以,所以,則,由,得,因?yàn)?,?dāng)且僅當(dāng),即時(shí),取等號(hào),因?yàn)椋?,所以,即,所以的取值范圍?故答案為:.14、【解析】由條件可得存在實(shí)數(shù),使得,再用向量表示出向量,即可得出答案.詳解】P,A,B,C四點(diǎn)共面,則存在實(shí)數(shù),使得所以即所以,解得故答案為:15、【解析】由題意分析為直角三角形,得到關(guān)于a、c的齊次式,即可求出離心率.【詳解】設(shè),則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:16、【解析】利用基本不等式得出取得最大值時(shí)的條件結(jié)合可知,再利用點(diǎn)在橢圓方程上,故可求得、的值,進(jìn)而求出橢圓的面積.詳解】由基本不等式可得,當(dāng)且僅當(dāng)時(shí)取得最大值,由可知,∵橢圓經(jīng)過(guò)點(diǎn),∴,解得,,則橢圓的面積為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),其中.(2).【解析】(1)利用柱體和椎體體積公式求得的函數(shù)表達(dá)式.(2)利用導(dǎo)數(shù)求得體積的最大值.【小問(wèn)1詳解】正六邊形的邊長(zhǎng)(0),底面積,于是,其中.【小問(wèn)2詳解】,,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以當(dāng)時(shí),.綜上,當(dāng)時(shí),蒙古包體積最大,且最大體積為.18、(1)證明見(jiàn)解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過(guò)作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過(guò)作于,則在中,,,,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量為平面的一個(gè)法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時(shí);設(shè)向量為平面的一個(gè)法向量則由,有,令,得;∴二面角的余弦值為.【點(diǎn)睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學(xué)生的分析能力,空間想象能力,運(yùn)算能力,屬于中檔題.19、(1);(2).【解析】(1)根據(jù)兩圓內(nèi)切,以及圓過(guò)定點(diǎn)列式求軌跡方程;(2)利用重心坐標(biāo)公式可知,,再設(shè)直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點(diǎn)的軌跡是以、為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,則因此曲線的方程是(2)因?yàn)椋瑒t點(diǎn)是的重心,易得直線的斜率存在,設(shè)直線的方程為,聯(lián)立消得:且①②由①②解得則直線的方程為即【點(diǎn)睛】本題考查直線與橢圓的問(wèn)題關(guān)系,本題的關(guān)鍵是根據(jù)求得,.20、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進(jìn)行求解即可.【小問(wèn)1詳解】證明:設(shè),因?yàn)槭堑冗吶切?,且,所以是的中點(diǎn),則.又,所以,所以,即.又平面平面,所以.又,所以平面.因?yàn)槠矫?,所以平面平?【小問(wèn)2詳解】解:因?yàn)?,所?在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點(diǎn)到平面的距離為,因?yàn)椋?,解得,即點(diǎn)到平面的距離為.21、(1);(2)【解析】(1)由題意可設(shè)拋物線的方程為y2=2px(p>0),運(yùn)用拋物線的定義,可得23,解得p=2,進(jìn)而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關(guān)系和弦長(zhǎng)公式,算出|AB|;利用點(diǎn)到直線的距離公式算出點(diǎn)O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且過(guò)一點(diǎn)P(2,m),可設(shè)拋物線的方程為y2=2px(p>0),P(2,m)到焦點(diǎn)的距離為3,即有P到準(zhǔn)線的距離為6,即23,解得p=2,即拋物線的標(biāo)準(zhǔn)方程為y2=4x;(2)聯(lián)立方程化簡(jiǎn),得x2﹣6x+1=0設(shè)交點(diǎn)為A(x1,y1),B(x2,y2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛東學(xué)院《專業(yè)英語(yǔ)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 三年級(jí)科學(xué)上冊(cè)第四單元4玻璃和陶瓷教案蘇教版
- 《組織簽字儀式》課件
- 《珍惜校園生活》課件
- 《計(jì)算機(jī)操作員理論》課件
- 安全與小狗玩耍的課件
- 上半年銷售工作總結(jié)及下半年工作參考計(jì)劃范文
- 奶粉培訓(xùn)課件
- 《心理健康教育公開(kāi)》課件
- 2021年全國(guó)統(tǒng)一高考化學(xué)試卷(全國(guó)乙卷)
- 【MOOC】融合新聞:通往未來(lái)新聞之路-暨南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2025年中聯(lián)重科公司發(fā)展戰(zhàn)略和經(jīng)營(yíng)計(jì)劃
- 2024年世界職業(yè)院校技能大賽中職組“工程測(cè)量組”賽項(xiàng)考試題庫(kù)(含答案)
- 靜脈治療小組管理
- 服裝廠班組長(zhǎng)培訓(xùn)
- 浙江省杭州二中2025屆物理高三第一學(xué)期期末聯(lián)考試題含解析
- 帶貨主播年終總結(jié)匯報(bào)
- 《激光原理及應(yīng)用》全套課件
- 北京市海淀區(qū)2023-2024學(xué)年高三上學(xué)期期末考試+歷史 含答案
- 急診心律失常的治療
- 2024中國(guó)綠發(fā)投資集團(tuán)限公司招聘300人高頻難、易錯(cuò)點(diǎn)練習(xí)500題附帶答案詳解
評(píng)論
0/150
提交評(píng)論