遼寧省建平縣高級中學2025屆高一上數(shù)學期末達標檢測試題含解析_第1頁
遼寧省建平縣高級中學2025屆高一上數(shù)學期末達標檢測試題含解析_第2頁
遼寧省建平縣高級中學2025屆高一上數(shù)學期末達標檢測試題含解析_第3頁
遼寧省建平縣高級中學2025屆高一上數(shù)學期末達標檢測試題含解析_第4頁
遼寧省建平縣高級中學2025屆高一上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省建平縣高級中學2025屆高一上數(shù)學期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則等于()A.1 B.2C.3 D.62.下圖是一幾何體的平面展開圖,其中四邊形為正方形,,,,為全等的等邊三角形,分別為的中點.在此幾何體中,下列結(jié)論中錯誤的為A.直線與直線共面 B.直線與直線是異面直線C.平面平面 D.面與面的交線與平行3.若log2a<0,,則()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<04.如圖,在正三棱柱中,,若二面角的大小為,則點C到平面的距離為()A.1 B.C. D.5.已知圓,圓,則兩圓的位置關(guān)系為A.相離 B.相外切C.相交 D.相內(nèi)切6.已知為正實數(shù),且,則的最小值為()A.4 B.7C.9 D.117.設,其中、是正實數(shù),且,,則與的大小關(guān)系是()A. B.C. D.8.已知函數(shù)在[-2,1]上具有單調(diào)性,則實數(shù)k的取值范圍是()A.k≤-8 B.k≥4C.k≤-8或k≥4 D.-8≤k≤49.函數(shù)的圖象可能是A. B.C. D.10.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c二、填空題:本大題共6小題,每小題5分,共30分。11.直線3x+2y+5=0在x軸上的截距為_____.12.若函數(shù)的圖象關(guān)于直線對稱,則的最小值是________.13.在下列四個函數(shù)中:①,②,③,④.同時具備以下兩個性質(zhì):(1)對于定義域上任意x,恒有;(2)對于定義域上的任意、,當時,恒有的函數(shù)是______(只填序號)14.已知函數(shù)()①當時的值域為__________;②若在區(qū)間上單調(diào)遞增,則的取值范圍是__________15.已知,則的大小關(guān)系是___________________.(用“”連結(jié))16.已知A,B,C為的內(nèi)角.(1)若,求的取值范圍;(2)求證:;(3)設,且,,,求證:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,三棱柱中,側(cè)棱垂直底面,,,點是棱的中點(1)證明:平面平面;(2)求三棱錐的體積18.已知實數(shù),定義域為的函數(shù)是偶函數(shù),其中為自然對數(shù)的底數(shù)(Ⅰ)求實數(shù)值;(Ⅱ)判斷該函數(shù)在上的單調(diào)性并用定義證明;(Ⅲ)是否存在實數(shù),使得對任意的,不等式恒成立.若存在,求出實數(shù)的取值范圍;若不存在,請說明理由19.設矩形的周長為,其中,如圖所示,把它沿對角線對折后,交于點.設,.(1)將表示成的函數(shù),并求定義域;(2)求面積的最大值.20.已知定義域為的函數(shù)是奇函數(shù).(1)求的值;(2)用函數(shù)單調(diào)性的定義證明在上是減函數(shù).21.已知定義域為的函數(shù)是奇函數(shù)(1)求,的值;(2)用定義證明在上為減函數(shù);(3)若對于任意,不等式恒成立,求的范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用對數(shù)和指數(shù)互化,可得,,再利用即可求解.【詳解】由得:,,所以,故選:A2、C【解析】畫出幾何體的圖形,如圖,由題意可知,A,直線BE與直線CF共面,正確,因為E,F(xiàn)是PA與PD的中點,可知EF∥AD,所以EF∥BC,直線BE與直線CF是共面直線;B,直線BE與直線AF異面;滿足異面直線的定義,正確C,因為△PAB是等腰三角形,BE與PA的關(guān)系不能確定,所以平面BCE⊥平面PAD,不正確D,∵AD∥BC,∴AD∥平面PBC,∴面PAD與面PBC的交線與BC平行,正確故答案選C3、D【解析】,則;,則,故選D4、C【解析】取的中點,連接和,由二面角的定義得出,可得出、、的值,由此可計算出和的面積,然后利用三棱錐的體積三棱錐的體積相等,計算出點到平面的距離.【詳解】取的中點,連接和,根據(jù)二面角的定義,.由題意得,所以,.設到平面的距離為,易知三棱錐的體積三棱錐的體積相等,即,解得,故點C到平面的距離為.故選C.【點睛】本題考查點到平面距離的計算,常用的方法有等體積法與空間向量法,等體積法本質(zhì)就是轉(zhuǎn)化為三棱錐的高來求解,考查計算能力與推理能力,屬于中等題.5、A【解析】利用半徑之和與圓心距的關(guān)系可得正確的選項.【詳解】圓,即,圓心為(0,3),半徑為1,圓,即,圓心為(4,0),半徑為3..所以兩圓相離,故選:A.6、C【解析】由,展開后利用基本不等式求最值【詳解】且,∴,當且僅當,即時,等號成立∴的最小值為9故選:C7、B【解析】利用基本不等式結(jié)合二次函數(shù)的基本性質(zhì)可得出與的大小關(guān)系.【詳解】因為、是正實數(shù),且,則,,因此,.故選:B.8、C【解析】根據(jù)二次函數(shù)的單調(diào)性和對稱軸之間的關(guān)系,建立條件求解即可.【詳解】函數(shù)對稱軸為,要使在區(qū)間[-2,1]上具有單調(diào)性,則或,∴或綜上所述的范圍是:k≤-8或k≥4.故選:C.9、C【解析】函數(shù)即為對數(shù)函數(shù),圖象類似的圖象,位于軸的右側(cè),恒過,故選:10、D【解析】對A,B,C,利用特殊值即可判斷,對D,利用不等式的性質(zhì)即可判斷.【詳解】對A,令a=1,b=-2,此時滿足a>b,但a2<b對B,令a=1,b=-2,此時滿足a>b,但1a>1對C,若c=0,a>b,則ac=bc,故C錯;對D,∵a>b∴a-c>b-c,故D正確.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】直接令,即可求出【詳解】解:對直線令,得可得直線在軸上截距是,故答案:【點睛】本題主要考查截距的定義,需要熟練掌握,屬于基礎題12、【解析】根據(jù)正弦函數(shù)圖象的對稱性求解.【詳解】依題意可知,得,所以,故當時,取得最小值.故答案為:.【點睛】本題考查三角函數(shù)的對稱性.正弦函數(shù)的對稱軸方程是,對稱中心是13、③④【解析】滿足條件(1)則函數(shù)為奇函數(shù),滿足條件(2)則函數(shù)為其定義域上的減函數(shù).分別判斷四個函數(shù)的單調(diào)性和奇偶性即可.【詳解】滿足條件(1)則函數(shù)為奇函數(shù),滿足條件(2)則函數(shù)為其定義域上的減函數(shù).①,f(x)奇函數(shù),在定義域不單調(diào);②,f(x)是偶函數(shù),在定義域R內(nèi)不單調(diào);③,f(x)是奇函數(shù),且在定義域R上單調(diào)遞減;④,滿足為奇函數(shù),且根據(jù)指數(shù)函數(shù)性質(zhì)可知其在定義域R上為減函數(shù).綜上,滿足條件(1)(2)的函數(shù)有③④.故答案為:③④.14、①.②.【解析】當時,分別求出兩段函數(shù)的值域,取并集即可;若在區(qū)間上單調(diào)遞增,則有,解之即可得解.【詳解】解:當時,若,則,若,則,所以當時的值域為;由函數(shù)(),可得函數(shù)在上遞增,在上遞增,因為在區(qū)間上單調(diào)遞增,所以,解得,所以若在區(qū)間上單調(diào)遞增,則的取值范圍是.故答案為:;.15、【解析】利用特殊值即可比較大小.【詳解】解:,,,故.故答案為:.16、(1)(2)證明見解析(3)證明見解析【解析】(1)根據(jù)兩角和的正切公式及均值不等式求解;(2)先證明,再由不等式證明即可;(3)找出不等式的等價條件,換元后再根據(jù)函數(shù)的單調(diào)性構(gòu)造不等式,利用不等式性質(zhì)即可得證.【小問1詳解】,為銳角,,,解得,當且僅當時,等號成立,即.【小問2詳解】在中,,,,.【小問3詳解】由(2)知,令,原不等式等價為,在上為增函數(shù),,,同理可得,,,,故不等式成立,問題得證.【點睛】本題第3問的證明需要用到,換元后轉(zhuǎn)換為,再構(gòu)造不等式是證明的關(guān)鍵,本題的難點就在利用函數(shù)單調(diào)性構(gòu)造出不等式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)由題意得,,即可得到平面,從而得到⊥,再根據(jù),得到,證得平面,即可得證;(2)首先求出,利用勾股定理求出,即可求出,再根據(jù)錐體的體積公式計算可得【詳解】解:(1)證明:由題設知,,,平面,所以平面,又因為平面,所以因為,所以,即因為,平面,所以平面,又因為平面,所以平面平面(2)由,得,所以,所以,所以的面積,所以18、(Ⅰ)1;(Ⅱ)在上遞增,證明詳見解析;(Ⅲ)不存在.【解析】(Ⅰ)根據(jù)函數(shù)是偶函數(shù),得到恒成立,即恒成立,進而得到,即可求出結(jié)果;(Ⅱ)任取,且,根據(jù)題意,作差得到,進而可得出函數(shù)單調(diào)性;(Ⅲ)由(Ⅱ)知函數(shù)在上遞增,由函數(shù)是偶函數(shù),所以函數(shù)在上遞減,再由題意,不等式恒成立可化為恒成立,即對任意的恒成立,根據(jù)判別式小于0,即可得出結(jié)果.【詳解】(Ⅰ)因為定義域為的函數(shù)是偶函數(shù),則恒成立,即,故恒成立,因為不可能恒為,所以當時,恒成立,而,所以(Ⅱ)該函數(shù)在上遞增,證明如下設任意,且,則,因為,所以,且;所以,即,即;故函數(shù)在上遞增(Ⅲ)由(Ⅱ)知函數(shù)在上遞增,而函數(shù)是偶函數(shù),則函數(shù)在上遞減.若存在實數(shù),使得對任意的,不等式恒成立.則恒成立,即,即對任意的恒成立,則,得到,故,所以不存在【點睛】本主要考查由函數(shù)奇偶性求參數(shù),用單調(diào)性的定義判斷函數(shù)單調(diào)性,以及由不等式恒成立求參數(shù)的問題,熟記函數(shù)單調(diào)性與奇偶性的定義即可,屬于常考題型.19、(1),;(2)【解析】(1)由題意得,則,根據(jù),可得,所以,化簡整理,即可求得y與x的關(guān)系,根據(jù),即可求得x的范圍,即可得答案;(2)由(1)可得,,則的面積,根據(jù)x的范圍,結(jié)合基本不等式,即可求得答案.【詳解】(1)由題意得:,則,因為在和中,,所以,即,所以在中,,所以,化簡可得,因為,所以,解得,所以,;(2)由(1)可得,,所以面積,因為,所以,所以,當且僅當,即時等號成立,此時面積,即面積最大值為【點睛】解題的關(guān)鍵是根據(jù)條件,表示出各個邊長,根據(jù)三角形全等,結(jié)合勾股定理,進行求解,易錯點為:利用基本不等式求解時,需滿足“①正”,“②定”,“③相等”,注意檢驗取等條件是否成立,考查分析理解,計算化簡的能力,屬中檔題.20、(1)(2)詳見解析【解析】(1)既可以利用奇函數(shù)的定義求得的值,也可以利用在處有意義的奇函數(shù)的性質(zhì)求,但要注意證明該值使得函數(shù)是奇函數(shù).(2)按照函數(shù)單調(diào)性定義法證明步驟證明即可.【詳解】解:(1)解法一:因為函數(shù)是定義在上的奇函數(shù),所以,即,整理得,所以,所以.解法二:因為函數(shù)是定義在上的奇函數(shù),所以,即,解得.當時,.因為,所以當時,函數(shù)是定義域為的奇函數(shù).(2)由(1)得.對于任意的,且,則.因為,所以,則,而,所以,即.所以函數(shù)在上是減函數(shù).【點睛】已知函數(shù)奇偶性求參數(shù)值的方法有:(1)利用定義(偶函數(shù))或(奇函數(shù))求解.(2)利用性質(zhì):如果為奇函數(shù),且在處有意義,則有;(3)結(jié)合定義利用特殊值法,求出參數(shù)值.定義法證明單調(diào)性:(1)取值;(2)作差(作商);(3)變形;(4)定號(與1比較);(5)下結(jié)論.21、(1),;(2)證明見解析;(3).【解析】(1)根據(jù)奇函數(shù)定義,利用且,列出關(guān)于、的方程組并解之得;(2)根據(jù)函數(shù)單調(diào)性的定義,任取實數(shù)、,通過作差因式分解可證出:當時,,即得函數(shù)在上為減函數(shù);(3)根據(jù)函數(shù)的單調(diào)性和奇偶性,將不等式轉(zhuǎn)化為:對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論