版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省黎平縣第三中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.浙江省在先行探索高質(zhì)量發(fā)展建設(shè)共同富裕示范區(qū),統(tǒng)計數(shù)據(jù)表明,2021年前三季度全省生產(chǎn)總值同比增長10.6%,兩年平均增長6.4%,倘若以8%的年平均增長率來計算,經(jīng)過多少年可實現(xiàn)全省生產(chǎn)總值翻一番(,)()A.7年 B.8年C.9年 D.10年2.已知函數(shù)是定義在在上的奇函數(shù),且當(dāng)時,,則函數(shù)的零點個數(shù)為()個A.2 B.3C.6 D.73.已知函數(shù)fx①fx的定義域是-②fx③fx在區(qū)間(0,+④fx的圖像與gx=1其中正確的結(jié)論是()A.①② B.③④C.①②③ D.①②④4.已知,,,則a,b,c大小關(guān)系為()A. B.C. D.5.若過,兩點的直線的傾斜角為,則y等于()A. B.C.1 D.56.若無論實數(shù)取何值,直線與圓相交,則的取值范圍為()A. B.C. D.7.在平行四邊形中,與相交于點,是線段中點,的延長線交于點,若,則等于()A. B.C. D.8.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為()A. B.C. D.9.下列函數(shù)中,在區(qū)間上為增函數(shù)的是()A. B.C. D.10.已知函數(shù),則函數(shù)()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知圓柱的軸截面是矩形,,是圓柱下底面弧的中點,是圓柱上底面弧的中點,那么異面直線與所成角的正切值為__________12.已知,若,使得,若的最大值為,最小值為,則__________13.不等式的解集為_________________.14.已知冪函數(shù)y=xα的圖象經(jīng)過點2,8,那么15.若角的終邊與角的終邊相同,則在內(nèi)與角的終邊相同的角是______16.的值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.若函數(shù),.(1)當(dāng)時,求函數(shù)的最小值;(2)若函數(shù)在區(qū)間上的最小值是,求實數(shù)的值.18.如圖,三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點(1)求證:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.19.已知函數(shù)f(x)=(1)若f(x)有兩個零點x1、x2,且x1(2)若命題“?x∈R,fx≤-720.已知函數(shù)(1)若,求不等式的解集;(2)若,且,求的最小值21.設(shè)全集U是實數(shù)集,集合,集合.(1)求集合A,集合B;(2)求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由題意,可得,,兩邊取常用對數(shù),根據(jù)參數(shù)數(shù)據(jù)即可求解.【詳解】解:設(shè)經(jīng)過年可實現(xiàn)全省生產(chǎn)總值翻一番,全省生產(chǎn)總值原來為,由題意可得,即,兩邊取常用對數(shù)可得,所以,因為,所以,所以經(jīng)過10年可實現(xiàn)全省生產(chǎn)總值翻一番.故選:D.2、D【解析】作出函數(shù),和圖象,可知當(dāng)時,的零點個數(shù)為3個;再根據(jù)奇函數(shù)的對稱性,可知當(dāng)時,也有3個零點,再根據(jù),由此可計算出函數(shù)的零點個數(shù).【詳解】在同一坐標(biāo)系中作出函數(shù),和圖象,如下圖所示:由圖象可知,當(dāng)時,的零點個數(shù)為3個;又因為函數(shù)和均是定義在在上的奇函數(shù),所以是定義在在上的奇函數(shù),根據(jù)奇函數(shù)的對稱性,可知當(dāng)時,的零點個數(shù)也為3個,又,所以也是零點;綜上,函數(shù)的零點個數(shù)一共有7個.故選:D.3、D【解析】可根據(jù)已知的函數(shù)解析式,通過求解函數(shù)的定義域、奇偶性、單調(diào)性和與gx=【詳解】函數(shù)fx=x②選項,因為fx=x選項③,在區(qū)間0,+∞時,fx=xx2+1=1x+1x,而函數(shù)選項④,可通過畫出fx的圖像與gx=1故選:D.4、B【解析】利用對數(shù)函數(shù)的單調(diào)性證明即得解.【詳解】解:,,所以故選:B5、B【解析】根據(jù)斜率的定義和坐標(biāo)表達(dá)式即可求得結(jié)果.【詳解】,.【點睛】本題考查斜率的定義和坐標(biāo)表達(dá)式,注意認(rèn)真計算,屬基礎(chǔ)題.6、A【解析】利用二元二次方程表示圓的條件及點與圓的位置關(guān)系即得.【詳解】由圓,可知圓,∴,又∵直線,即,恒過定點,∴點在圓的內(nèi)部,∴,即,綜上,.故選:A.7、A【解析】化簡可得,再由及選項可得答案【詳解】解:由題意得,,;、、三點共線,,結(jié)合選項可知,;故選:8、A【解析】正四棱錐P-ABCD的外接球的球心在它的高上,記為O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面積,故選A.考點:球的體積和表面積9、B【解析】利用基本初等函數(shù)的單調(diào)性可得出合適的選項.【詳解】函數(shù)、在區(qū)間上為減函數(shù),函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上不單調(diào).故選:B.10、C【解析】根據(jù)分段函數(shù)的定義域先求出,再根據(jù),根據(jù)定義域,結(jié)合,即可求出結(jié)果.【詳解】由題意可知,,所以.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】取圓柱下底面弧AB的另一中點D,連接C1D,AD,因為C是圓柱下底面弧AB中點,所以AD∥BC,所以直線AC1與AD所成角等于異面直線AC1與BC所成角,因為C1是圓柱上底面弧A1B1的中點,所以C1D⊥圓柱下底面,所以C1D⊥AD,因為圓柱的軸截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直線AC1與AD所成角的正切值為2,所以異面直線AC1與BC所成角的正切值為2故答案為:2.點睛:求兩條異面直線所成角關(guān)鍵是作為這兩條異面直線所成角,作兩條異面直線所成角的方法是:將其中一條一條直線平移與另一條相交相交或是將兩條異面直線同時平移到某個位置使他們相交,然后再同一平面內(nèi)求相交直線所成角,值得注意的是:平移后相交所得的角必須容易算出,因此平移時要求選擇恰當(dāng)位置.12、【解析】作出函數(shù)的圖像,計算函數(shù)的對稱軸,設(shè),數(shù)形結(jié)合判斷得時,取最小值,時,取最大值,再代入解析式從而求解出另外兩個值,從而得和,即可求解.【詳解】作出函數(shù)的圖像如圖所示,令,則函數(shù)的對稱軸為,由圖可知函數(shù)關(guān)于,,對稱,設(shè),則當(dāng)時,取最小值,此時,可得,故;當(dāng)時,取最大值,此時,可得,故,所以.故答案為:【點睛】解答該題的關(guān)鍵是利用數(shù)形結(jié)合,利用三角函數(shù)的對稱性與周期性判斷何時取得最大值與最小值,再代入計算.13、或.【解析】利用一元二次不等式的求解方法進(jìn)行求解.【詳解】因為,所以,所以或,所以不等式的解集為或.故答案為:或.14、3【解析】根據(jù)冪函數(shù)y=xα的圖象經(jīng)過點2,8,由2【詳解】因為冪函數(shù)y=xα的圖象經(jīng)過點所以2α解得α=3,故答案:315、【解析】根據(jù)角的終邊與角的終邊相同,得到,再得到,然后由列式,根據(jù),可得整數(shù)的值,從而可得.【詳解】∵(),∴()依題意,得(),解得(),∴,∴在內(nèi)與角的終邊相同的角為故答案為【點睛】本題考查了終邊相同的角的表示,屬于基礎(chǔ)題.16、【解析】根據(jù)兩角和的正弦公式即可求出【詳解】原式故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)當(dāng)時,,當(dāng)時,函數(shù)的值最小,求解即可;(2)由于,分,,三種情況討論,再結(jié)合題意,可得實數(shù)的值【小問1詳解】解:依題意得若,則又,所以的值域為所以當(dāng)時,取得最小值為小問2詳解】解:∵∴所以當(dāng)時,,所以,不符合題意當(dāng)時,,解得當(dāng)時,,得,不符合題意綜上所述,實數(shù)的值為.18、(1)見解析(2)見解析【解析】解析:(1)在三棱臺DEFABC中,BC=2EF,H為BC的中點,BH∥EF,BH=EF,四邊形BHFE為平行四邊形,有BE∥HF.BE∥平面FGH在△ABC中,G為AC的中點,H為BC的中點,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)連接HE,EGG,H分別為AC,BC的中點,GH∥AB.AB⊥BC,GH⊥BC.又H為BC的中點,EF∥HC,EF=HC,四邊形EFCH是平行四邊形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH?平面EGH,HE∩GH=H,BC⊥平面EGH.BC?平面BCD,平面BCD⊥平面EGH.19、(1)a=±1;(2)-2,2.【解析】(1)由已知條件可得Δ>0,結(jié)合韋達(dá)定理可求得實數(shù)a(2)由已知可知,命題“?x∈R,x2-2ax+8-a2>0【小問1詳解】解:由已知可得Δ=4a2-41-由韋達(dá)定理可得x1+x所以,x1-x2故a=±1.【小問2詳解】解:由題意可知,?x∈R,x則判別式Δ'=4a所以,實數(shù)a的取值范圍是-2,2.20、(1)答案不唯一,具體見解析(2)【解析】(1)由,對分類討論,判斷與的大小,確定不等式的解集.(2)利用把用表示,代入表示為的函數(shù),利用基本不等式可求.【詳解】解:(1)因為,所以,由,得,即,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025大型超市商鋪租賃合同
- 泰安勞動合同范例
- 城鄉(xiāng)土地出售合同范例
- 窗簾合同范例簡易
- 中介 租房房東 合同范例
- 銅仁幼兒師范高等??茖W(xué)?!队鹈蚓銟凡俊?023-2024學(xué)年第一學(xué)期期末試卷
- 銅陵學(xué)院《歷史認(rèn)知導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 桐城師范高等??茖W(xué)?!冬F(xiàn)代水文地質(zhì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 同濟(jì)大學(xué)浙江學(xué)院《光化學(xué)與光電化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 同濟(jì)大學(xué)浙江學(xué)院《創(chuàng)新思維與設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 【MOOC】法理學(xué)-西南政法大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年新湘教版七年級上冊數(shù)學(xué)教學(xué)課件 第4章 圖形的認(rèn)識 章末復(fù)習(xí)
- 2024年民用爆炸物品運輸合同
- 國家開放大學(xué)24237丨學(xué)前兒童語言教育活動指導(dǎo)(統(tǒng)設(shè)課)期末終考題庫及答案
- 2024-2030年中國離合器制造行業(yè)運行動態(tài)及投資發(fā)展前景預(yù)測報告
- 【MOOC】大學(xué)生創(chuàng)新創(chuàng)業(yè)教育-云南大學(xué) 中國大學(xué)慕課MOOC答案
- 《個體防護(hù)裝備安全管理規(guī)范AQ 6111-2023》知識培訓(xùn)
- 儲能運維安全注意事項
- 客戶管理系統(tǒng)技術(shù)服務(wù)合同
- 北京交通大學(xué)《成本會計》2023-2024學(xué)年第一學(xué)期期末試卷
- 治療皮膚病藥膏市場需求與消費特點分析
評論
0/150
提交評論