![江西科技學(xué)院附屬中學(xué)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view12/M05/2B/1E/wKhkGWcJYCOAUlT-AAHaZ3oR4vc034.jpg)
![江西科技學(xué)院附屬中學(xué)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view12/M05/2B/1E/wKhkGWcJYCOAUlT-AAHaZ3oR4vc0342.jpg)
![江西科技學(xué)院附屬中學(xué)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view12/M05/2B/1E/wKhkGWcJYCOAUlT-AAHaZ3oR4vc0343.jpg)
![江西科技學(xué)院附屬中學(xué)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view12/M05/2B/1E/wKhkGWcJYCOAUlT-AAHaZ3oR4vc0344.jpg)
![江西科技學(xué)院附屬中學(xué)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view12/M05/2B/1E/wKhkGWcJYCOAUlT-AAHaZ3oR4vc0345.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西科技學(xué)院附屬中學(xué)2025屆數(shù)學(xué)高二上期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.方程表示的曲線是()A.一個橢圓和一個點 B.一個雙曲線的右支和一條直線C.一個橢圓一部分和一條直線 D.一個橢圓2.對于兩個平面、,“內(nèi)有三個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設(shè)橢圓:的右頂點為,右焦點為,為橢圓在第二象限內(nèi)的點,直線交橢圓于點,為原點,若直線平分線段,則橢圓的離心率為A. B.C. D.4.?dāng)?shù)列,,,,…,是其第()項A.17 B.18C.19 D.205.若函數(shù),滿足且,則()A.1 B.2C.3 D.46.設(shè)是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值7.若,都為正實數(shù),,則的最大值是()A. B.C. D.8.已知函數(shù)(是的導(dǎo)函數(shù)),則()A.21 B.20C.16 D.119.若拋物線y2=4x上一點P到x軸的距離為2,則點P到拋物線的焦點F的距離為()A.4 B.5C.6 D.710.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.811.如圖,雙曲線,是圓的一條直徑,若雙曲線過,兩點,且離心率為,則直線的方程為()A. B.C. D.12.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經(jīng)》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實數(shù)和,有,當(dāng)且僅當(dāng)時等號成立D.如果,那么二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線互相垂直,則___________.14.已知圓,圓,則兩圓的公切線條數(shù)是___________.15.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.16.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點,則橢圓的離心率的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為,左、右焦點分別為,為橢圓上一點,且軸,,為垂足,為坐標(biāo)原點,且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的右焦點的直線(斜率不為)與橢圓交于兩點,為軸正半軸上一點,且,求點的坐標(biāo)18.(12分)已知數(shù)列為正項等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項公式;(2)若數(shù)列的前n項和為,數(shù)列滿足,證明:數(shù)列的前n項和19.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值20.(12分)在水平桌面上放一只內(nèi)壁光滑的玻璃水杯,已知水杯內(nèi)壁為拋物面型(拋物面指拋物線繞其對稱軸旋轉(zhuǎn)所得到的面),拋物面的軸截面是如圖所示的拋物線.現(xiàn)有一些長短不一、質(zhì)地均勻的細(xì)直金屬棒,其長度均不小于拋物線通徑的長度(通徑是過拋物線焦點,且與拋物線的對稱軸垂直的直線被拋物線截得的弦),若將這些細(xì)直金屬棒,隨意丟入該水杯中,實驗發(fā)現(xiàn):當(dāng)細(xì)棒重心最低時,達(dá)到靜止?fàn)顟B(tài),此時細(xì)棒交匯于一點.(1)請結(jié)合你學(xué)過的數(shù)學(xué)知識,猜想細(xì)棒交匯點的位置;(2)以玻璃水杯內(nèi)壁軸截面的拋物線頂點為原點,建立如圖所示直角坐標(biāo)系.設(shè)玻璃水杯內(nèi)壁軸截面的拋物線方程為,將細(xì)直金屬棒視為拋物線的弦,且弦長度為,以細(xì)直金屬棒的中點為其重心,請從數(shù)學(xué)角度解釋上述實驗現(xiàn)象.21.(12分)設(shè)p:;q:關(guān)于x的方程無實根.(1)若q為真命題,求實數(shù)k的取值范圍;(2)若是假命題,且是真命題,求實數(shù)k的取值范圍.22.(10分)2021年國慶期間,某電器商場為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每消費滿8千元,可減8百元.方案二:消費金額超過8千元(含8千元),可抽取小球三次,其規(guī)則是依次從裝有2個紅色小球、2個黃色小球的一號箱子,裝有2個紅色小球、2個黃色小球的二號箱子,裝有1個紅色小球、3個黃色小球的三號箱子各抽一個小球(這些小球除顏色外完全相同),其優(yōu)惠情況為:若抽出3個紅色小球則打6折;若抽出2個紅色小球則打7折;若抽出1個紅色小球則打8折;若沒有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;(2)若你朋友在該商場消費了1萬元,請用所學(xué)知識幫助你朋友分析一下應(yīng)選擇哪種付款方案.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個橢圓的一部分和一條直線.故選:C2、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個點到的距離相等,當(dāng)這三個點不在一條直線上時,可得;當(dāng)這三個點在一條直線上時,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有三個點到的距離相等”是“”的必要不充分條件.故選:B.3、B【解析】如上圖,設(shè)AC中點為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點睛:本題主要考查橢圓的方程和性質(zhì),主要是離心率的求法,本題的關(guān)鍵是利用中位線定理和相似三角形定理4、D【解析】根據(jù)題意,分析歸納可得該數(shù)列可以寫成,,,……,,可得該數(shù)列的通項公式,分析可得答案.【詳解】解:根據(jù)題意,數(shù)列,,,,…,,可寫成,,,……,,對于,即,為該數(shù)列的第20項;故選:D.【點睛】此題考查了由數(shù)列的項歸納出數(shù)列的通項公式,考查歸納能力,屬于基礎(chǔ)題.5、C【解析】先取,得與之間的關(guān)系,然后根據(jù)導(dǎo)數(shù)的運(yùn)算直接求導(dǎo),代值可得.【詳解】取,則有,即,又因為所以,所以,所以.故選:C6、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進(jìn)而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C7、B【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因為,都為正實數(shù),,所以,當(dāng)且僅當(dāng),即時,取最大值.故選:D8、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B9、A【解析】根據(jù)拋物線y2=4x上一點P到x軸的距離為2,得到點P(3,±2),然后利用拋物線的定義求解.【詳解】由題意,知拋物線y2=4x的準(zhǔn)線方程為x=-1,∵拋物線y2=4x上一點P到x軸的距離為2,則P(3,±2),∴點P到拋物線的準(zhǔn)線的距離為3+1=4,∴點P到拋物線的焦點F的距離為4.故選:A.10、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.11、D【解析】由離心率求得,設(shè)出兩點坐標(biāo)代入雙曲線方程相減求得直線斜率與的關(guān)系得結(jié)論【詳解】由題意,則,即,由圓方程知,設(shè),,則,,又,兩式相減得,所以,直線方程為,即故選:D12、C【解析】設(shè)圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關(guān)系,可得即可得答案.【詳解】設(shè)圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當(dāng)且僅當(dāng)時等號成立,所以對任意實數(shù)和,有,當(dāng)且僅當(dāng)時等號成立.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由直線垂直的性質(zhì)求解即可.【詳解】由題意得,解得.故答案為:14、【解析】首先把圓的一般方程化為標(biāo)準(zhǔn)方程,進(jìn)一步求出兩圓的位置關(guān)系,可得兩圓的公切線條數(shù).【詳解】解:由圓,可得:,可得其圓心為,半徑為;由,可得,可得其圓心為,半徑為2;所以可得其圓心距為:,可得:,故兩圓相交,其公切線條數(shù)為,故答案為:2.【點睛】本題主要考查兩圓的位置關(guān)系及兩圓公切線條數(shù)的判斷,屬于中檔題.15、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設(shè)A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.16、【解析】當(dāng)圓的直徑介于橢圓長軸和短軸長度范圍之間時,橢圓和圓有四個不同的焦點,由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點,故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達(dá)定理求出和,利用幾何關(guān)系可知,即可得,將韋達(dá)定理代入化簡即可求得點坐標(biāo).【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè)直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.18、(1),(2)證明見解析【解析】(1)將已知條件用首項和公比表示,聯(lián)立方程組即可求解數(shù)列的通項公式,然后由對數(shù)的運(yùn)算性質(zhì)即可得數(shù)列的通項公式;(2)由(1)求出,然后利用裂項相消求和法求出數(shù)列的前n項和,即可證明.【小問1詳解】解:設(shè)等比數(shù)列的公比為,由題意,得,即,解得或(舍),又,所以,所以,;【小問2詳解】解:,所以,所以19、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標(biāo)原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標(biāo)系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標(biāo)原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系設(shè),則,所以,,,由(1)可知平面的一個法向量為設(shè)平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.20、(1)拋物線的焦點或拋物面的焦點(2)答案見解析【解析】(1)結(jié)合通徑的特點可猜想得到結(jié)果;(2)將問題轉(zhuǎn)化為當(dāng)時,只要過點,則中點到的距離最小,根據(jù),結(jié)合拋物線定義可得結(jié)論.【小問1詳解】根據(jù)通徑的特征,知通徑會經(jīng)過拋物線的焦點達(dá)到靜止?fàn)顟B(tài),則可猜想細(xì)棒交匯點位置為:拋物線焦點或拋物面的焦點.【小問2詳解】解釋上述現(xiàn)象,即證:當(dāng)(為拋物線通徑)時,只要過點,則中點到的距離最小;如圖所示,記點在拋物線準(zhǔn)線上的射影分別是,,由拋物線定義知:,當(dāng)過拋物線焦點時,點到準(zhǔn)線距離取得最小值,最小值為的一半,此時點到軸距離最小.【點睛】關(guān)鍵點點睛:本題考查拋物線的實際應(yīng)用問題,解題關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為拋物線焦點弦的中點到軸距離最小問題的證明,通過拋物線的定義可證得結(jié)論.21、(1);(2).【解析】(1)根據(jù)命題的真假,結(jié)合一元二次方程無實根,列出的不等式,即可求得結(jié)果;(2)求得命題為真對應(yīng)的的范圍,結(jié)合命題一個為真命題一個為假命題,即可列出的不等式組,求解即可.【小問1詳解】若q為真命題,則,解得,即實數(shù)k的取值范圍為.【小問2詳解】若p為真,,解得,由是假命題,且是真命題,得:p、q兩命題一真一假,當(dāng)p真q假時,或,得,當(dāng)p假q真時,,此時無解.綜上的取值范圍為.22、(1)(2)選擇方案二更劃算【解析】(1)要使方案二比方案一優(yōu)惠,則需要抽出至少一個紅球,求出沒有抽出紅色小球的概率,再根據(jù)對立事件的概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供貨鋼材合同范例
- 勞務(wù)入駐合同范例
- 入境團(tuán)隊合同范本
- 個人工地用工合同范例
- 業(yè)主接房物業(yè)合同范本
- 烏鎮(zhèn)景區(qū)商鋪租賃合同范例
- 出售廠房土地合同范例
- 產(chǎn)品押款合同范例寫
- 交易合同范例牛奶
- 7人合伙合同范本
- 煙草企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化規(guī)范1-200題附有答案
- FZ∕T 54007-2019 錦綸6彈力絲行業(yè)標(biāo)準(zhǔn)
- 人教部編版四年級語文下冊課內(nèi)外閱讀訓(xùn)練2《鄉(xiāng)下人家》(有答案)
- ??停?024年智能制造校園招聘白皮書
- 住院病人燙傷的應(yīng)急演練
- 新入職消防員考核試卷題庫(240道)
- 海員的營養(yǎng)-1315醫(yī)學(xué)營養(yǎng)霍建穎等講解
- 2023年廣東省招聘事業(yè)單位人員考試真題及答案
- 質(zhì)量管理與產(chǎn)品質(zhì)量保障措施
- 全國自然教育中長期發(fā)展規(guī)劃
- 機(jī)修崗位述職個人述職報告
評論
0/150
提交評論