2025屆江蘇百校聯(lián)考高一數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
2025屆江蘇百校聯(lián)考高一數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
2025屆江蘇百校聯(lián)考高一數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
2025屆江蘇百校聯(lián)考高一數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
2025屆江蘇百校聯(lián)考高一數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆江蘇百校聯(lián)考高一數(shù)學第一學期期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,則一定有()A. B.C. D.以上答案都不對2.若、是全集真子集,則下列四個命題①;②;③;④中與命題等價的有A.1個 B.2個C.3個 D.4個3.函數(shù)與g(x)=-x+a的圖象大致是A. B.C. D.4.已知,則()A. B.C. D.5.已知集合,,若,則的子集個數(shù)為A.14 B.15C.16 D.326.已知兩條繩子提起一個物體處于平衡狀態(tài).若這兩條繩子互相垂直,其中一條繩子的拉力為50,且與兩繩拉力的合力的夾角為30°,則另一條繩子的拉力為()A.100 B.C.50 D.7.已知在上的減函數(shù),則實數(shù)的取值范圍是()A. B.C. D.8.終邊在y軸上的角的集合不能表示成A. B.C. D.9.函數(shù)的定義域是()A. B.C D.10.過點且平行于直線的直線方程為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),為偶函數(shù),則______12.用二分法研究函數(shù)f(x)=x3+3x-1的零點時,第一次經(jīng)計算,可得其中一個零點x0∈(0,1),那么經(jīng)過下一次計算可得x0∈___________(填區(qū)間).13.若命題,,則的否定為___________.14.已知函數(shù)的兩個零點分別為,則___________.15.函數(shù),則__________.16.已知函數(shù)且(1)若函數(shù)在區(qū)間上恒有意義,求實數(shù)的取值范圍;(2)是否存在實數(shù),使得函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在,求出的值;若不存在,請說明理由三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線l經(jīng)過點,其傾斜角為.(1)求直線l的方程;(2)求直線l與兩坐標軸圍成的三角形的面積.18.已知函數(shù),(1)求函數(shù)最小正周期以及函數(shù)在區(qū)間上的最大值和最小值;(2)將函數(shù)圖象的橫坐標伸長到原來的2倍,縱坐標不變,得到函數(shù)的圖象,若,求實數(shù)的取值范圍19.已知函數(shù).(1)當有是實數(shù)解時,求實數(shù)的取值范圍;(2)若,對一切恒成立,求實數(shù)的取值范圍.20.已知函數(shù)(為常數(shù)且)的圖象經(jīng)過點,(1)試求的值;(2)若不等式在時恒成立,求實數(shù)的取值范圍.21.設為定義在R上的偶函數(shù),當時,;當時,,直線與拋物線的一個交點為,如圖所示.(1)補全的圖像,寫出的遞增區(qū)間(不需要證明);(2)根據(jù)圖象寫出不等式的解集

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】對于ABC,舉例判斷,【詳解】對于AB,若,則,所以AB錯誤,對于C,若,則,所以C錯誤,故選:D2、B【解析】直接根據(jù)集合的交集、并集、補集的定義判斷集合間的關系,從而求出結(jié)論【詳解】解:由得Venn圖,①;②;③;④;故和命題等價的有①③,故選:B【點睛】本題主要考查集合的包含關系的判斷及應用,考查集合的基本運算,考查了Venn圖的應用,屬于基礎題3、A【解析】因為直線是遞減,所以可以排除選項,又因為函數(shù)單調(diào)遞增時,,所以當時,,排除選項B,此時兩函數(shù)的圖象大致為選項,故選A.【方法點晴】本題通過對多個圖象的選擇考查函數(shù)的指數(shù)函數(shù)、一次函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意的選項一一排除.4、A【解析】利用誘導公式及正弦函數(shù)的單調(diào)性可判斷的大小,利用正切函數(shù)的單調(diào)性可判斷的范圍,從而可得正確的選項.【詳解】,,因為,故,而,因為,故,故,綜上,,故選:A5、C【解析】根據(jù)集合的并集的概念得到,集合的子集個數(shù)有個,即16個故答案為C6、D【解析】利用向量的平行四邊形法則求解即可【詳解】如圖,兩條繩子提起一個物體處于平衡狀態(tài),不妨設,根據(jù)向量的平行四邊形法則,故選:D7、B【解析】令,,()若,則函數(shù),減函數(shù),由題設知為增函數(shù),需,故此時無解()若,則函數(shù)是增函數(shù),則為減函數(shù),需且,可解得綜上可得實數(shù)的取值范圍是故選點睛:已知函數(shù)的單調(diào)性確定參數(shù)的值或范圍要注意以下兩點:(1)若函數(shù)在區(qū)間上單調(diào),則該函數(shù)在此區(qū)間的任意子區(qū)間上也是單調(diào)的;(2)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點的取值;(3)復合函數(shù)的單調(diào)性,不僅要注意內(nèi)外函數(shù)單調(diào)性對應關系,而且要注意內(nèi)外函數(shù)對應自變量取值范圍.8、B【解析】分別寫出終邊落在y軸正半軸和負半軸上的角的集合,然后進行分析運算即可得解.【詳解】終邊落在y軸正半軸上的角的集合為:,終邊落在y軸負半軸上的角的集合為:,故終邊在y軸上的角的集合可表示成為,故A選項可以表示;將與取并集為:,故C選項可以表示;將與取并集為:,故終邊在y軸上的角的集合可表示成為,故D選項可以表示;對于B選項,當時,或,顯然不是終邊落在y軸上的角;綜上,B選項不能表示,滿足題意.故選:B.【點睛】本題考查軸線角的定義,側(cè)重對基礎知識的理解的應用,考查邏輯思維能力和分析運算能力,屬于??碱}.9、B【解析】解不等式組即可得定義域.【詳解】由得:所以函數(shù)的定義域是.故選:B10、A【解析】解析:設與直線平行直線方程為,把點代入可得,所以所求直線的方程為,故選A二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】利用二次函數(shù)為偶函數(shù)的性質(zhì)得一次項系數(shù)為0,定義域關于原點對稱,即可求得的值.【詳解】由題意得:解得:故答案為:.【點睛】本題考查二次函數(shù)的性質(zhì),考查邏輯推理能力和運算求解能力,求解時注意隱含條件的挖掘.12、【解析】根據(jù)零點存在性定理判斷零點所在區(qū)間.【詳解】,,所以下一次計算可得.故答案為:13、,【解析】利用特稱命題的否定可得出結(jié)論.【詳解】命題為特稱命題,該命題的否定為“,”.故答案為:,.14、【解析】依題意方程有兩個不相等實數(shù)根、,利用韋達定理計算可得;【詳解】解:依題意令,即,所以方程有兩個不相等實數(shù)根、,所以,,所以;故答案為:15、【解析】先求的值,再求的值.【詳解】由題得,所以.故答案為【點睛】本題主要考查指數(shù)對數(shù)運算和分段函數(shù)求值,意在考查學生對這些知識的理解掌握水平,屬于基礎題.16、(1)(2)存在;(或)【解析】(1)由題意,得在上恒成立,參變分離得恒成立,再令新函數(shù),判斷函數(shù)的單調(diào)性,求解最大值,從而求出的取值范圍;(2)在(1)的條件下,討論與兩種情況,利用復合函數(shù)同增異減的性質(zhì)求解對應的取值范圍,再利用最大值求解參數(shù),并判斷是否能取到.【小問1詳解】由題意,在上恒成立,即在恒成立,令,則在上恒成立,令所以函數(shù)在在上單調(diào)遞減,故則,即的取值范圍為.【小問2詳解】要使函數(shù)在區(qū)間上為增函數(shù),首先在區(qū)間上恒有意義,于是由(1)可得,①當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為增函數(shù),故且,即,此時的最大值為即,滿足題意②當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為減函數(shù),故且,即,此時的最大值為即,滿足題意綜上,存在(或)【點睛】一般關于不等式在給定區(qū)間上恒成立的問題都可轉(zhuǎn)化為最值問題,參變分離后得恒成立,等價于;恒成立,等價于成立.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由斜率,再利用點斜式即可求得直線方程;(2)由直線的方程,分別令為,得到縱截距與橫截距,即可得到直線與兩坐標軸所圍成的三角形的面積.【詳解】(1)直線方程為:,即.(2)由(1)令,則;令,則.所以直線與兩坐標軸所圍成的三角形的面積為:.【點睛】本題考查直線的點斜式方程,直線截距的意義,三角形的面積,屬于基礎題.18、(1);最大值為,最小值;(2).【解析】(1)由題可得,再利用正弦函數(shù)的性質(zhì)即求;(2)由題可得,利用正弦函數(shù)的性質(zhì)可知在上單調(diào)遞增,進而可得,即得.【小問1詳解】∵,,∴,∴函數(shù)的最小正周期為,當時,,,∴,故函數(shù)在區(qū)間上的最大值為,最小值;【小問2詳解】由題可得,由,可得,故在上單調(diào)遞增,又,,由可得,,解得,∴實數(shù)的取值范圍為.19、(1);(2)【解析】(1)由題意可知實數(shù)的取值范圍為函數(shù)的值域,結(jié)合三角函數(shù)的范圍和二次函數(shù)的性質(zhì)可知時函數(shù)取得最小值,當時函數(shù)取得最大值,實數(shù)的取值范圍是.(2)由題意可得時函數(shù)取得最大值,當時函數(shù)取得最小值,原問題等價于,求解不等式組可得實數(shù)的取值范圍是.試題解析:(1)因為,可化得,若方程有解只需實數(shù)的取值范圍為函數(shù)的值域,而,又因為,當時函數(shù)取得最小值,當時函數(shù)取得最大值,故實數(shù)的取值范圍是.(2)由,當時函數(shù)取得最大值,當時函數(shù)取得最小值,故對一切恒成立只需,解得,所以實數(shù)的取值范圍是.點睛:二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,有關二次函數(shù)的問題,數(shù)形結(jié)合,密切聯(lián)系圖象是探求解題思路的有效方法.一般從:①開口方向;②對稱軸位置;③判別式;④端點函數(shù)值符號四個方面分析.20、(1);(2).【解析】(1)利用函數(shù)圖像上的兩個點的坐標列方程組,解方程組求得的值.(2)將原不等式分離常數(shù),利用函數(shù)的單調(diào)性,求出的取值范圍.【詳解】(1)由于函數(shù)圖像經(jīng)過,,所以,解得,所以.(2)原不等式為,即在時恒成立,而在時單調(diào)遞減,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論