江蘇省連云港市海慶中學2025屆數(shù)學高二上期末教學質量檢測試題含解析_第1頁
江蘇省連云港市海慶中學2025屆數(shù)學高二上期末教學質量檢測試題含解析_第2頁
江蘇省連云港市海慶中學2025屆數(shù)學高二上期末教學質量檢測試題含解析_第3頁
江蘇省連云港市海慶中學2025屆數(shù)學高二上期末教學質量檢測試題含解析_第4頁
江蘇省連云港市海慶中學2025屆數(shù)學高二上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省連云港市海慶中學2025屆數(shù)學高二上期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.某研究所為了研究近幾年中國留學生回國人數(shù)的情況,對2014至2018年留學生回國人數(shù)進行了統(tǒng)計,數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學生回國人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計數(shù)據(jù)求得留學生回國人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預測年留學生回國人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬3.展開式的第項為()A. B.C. D.4.在平面直角坐標系xOy中,雙曲線(,)的左、右焦點分別為,,點M是雙曲線右支上一點,,且,則雙曲線的離心率為()A. B.C. D.5.若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是()A. B.C. D.6.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數(shù)學研究時,有一個有趣的問題:一個邊長為2的正方形內(nèi)部挖了一個內(nèi)切圓,現(xiàn)在以該內(nèi)切圓的圓心且平行于正方形的一邊的直線為軸旋轉一周形成幾何體,則該旋轉體的體積為()A. B.C. D.7.已知中,角,,的對邊分別為,,,且,,成等比數(shù)列,則這個三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形8.函數(shù),的值域為()A. B.C. D.9.已知三個頂點都在拋物線上,且為拋物線的焦點,若,則()A.6 B.8C.10 D.1210.已知數(shù)列中,,則()A. B.C. D.11.某考點配備的信號檢測設備的監(jiān)測范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機以每分鐘50米的速度從設備正東方向米的處出發(fā),沿處西北方向走向位于設備正北方向的處,則這名工作人員被持續(xù)監(jiān)測的時長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘12.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A192

里 B.96

里C.48

里 D.24

里二、填空題:本題共4小題,每小題5分,共20分。13.設直線,直線,若,則_______.14.已知曲線在點處的切線方程是,則的值為______15.在平面直角坐標系中,若拋物線上的點P到該拋物線焦點的距離為5,則點P的縱坐標為_______16.在空間直角坐標系中,已知向量,則在軸上的投影向量為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我們知道:當是圓O:上一點,則圓O的過點的切線方程為;當是圓O:外一點,過作圓O的兩條切線,切點分別為,則方程表示直線AB的方程,即切點弦所在直線方程.請利用上述結論解決以下問題:已知圓C的圓心在x軸非負半軸上,半徑為3,且與直線相切,點在直線上,過點作圓C的兩條切線,切點分別為.(1)求圓C的方程;(2)當時,求線段AB的長;(3)當點在直線上運動時,求線段AB長度的最小值.18.(12分)已知:,,:,,且為真命題,求實數(shù)的取值范圍.19.(12分)已知冪函數(shù)在上單調(diào)遞減,函數(shù)的定義域為集合A(1)求m的值;(2)當時,的值域為集合B,若是成立的充分不必要條件,求實數(shù)的取值范圍20.(12分)如圖,P為圓上一動點,點A坐標為,線段AP的垂直平分線交直線BP于點Q(1)求點Q的軌跡E的方程;(2)過點A的直線l交E于C,D兩點,若△BCD內(nèi)切圓的半徑為,求直線l的方程.21.(12分)已知橢圓的離心率為,橢圓的上頂點到焦點的距離為.(1)求橢圓的方程;(2)若直線與橢圓相交于、兩點(、不是左、右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點.22.(10分)已知雙曲線與有相同的漸近線,且經(jīng)過點.(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點,且線段的中點在圓上,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用充分條件、必要條件的定義可得出結論.【詳解】,因此,“”是“”必要不充分條件.故選:B.2、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應的年份代碼為,令,則,所以預測2022年留學生回國人數(shù)為66.94萬,故選:D.3、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B4、A【解析】本題考查雙曲線的定義、幾何性質及直角三角形的判定即可解決.【詳解】因為,,所以在中,邊上的中線等于的一半,所以.因為,所以可設,,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A5、A【解析】函數(shù)在區(qū)間上單調(diào)遞增,轉化為導函數(shù)在該區(qū)間上大于等于0恒成立,進而求出結果.【詳解】由題意得:在區(qū)間上恒成立,而,所以.故選:A6、B【解析】根據(jù)題意,結合圓柱和球的體積公式進行求解即可.【詳解】由題意可知:該旋轉體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B7、B【解析】根據(jù)題意求出,結合余弦定理分情況討論即可.【詳解】解:因為,所以.由題意得,利用余弦定理得:.當,即時,,即,解得:.此時三角形為等邊三角形;當,即時,,不成立.所以三角形的形狀是等邊三角形.故選:B.【點睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎題.8、D【解析】求出函數(shù)的導數(shù),根據(jù)導數(shù)在函數(shù)最值上的應用,即可求出結果.【詳解】因為,所以,令,又,所以或;所以當時,;當時,;所以在單調(diào)遞增,在上單調(diào)遞減;所以;又,,所以;所以函數(shù)的值域為.故選:D.9、D【解析】設,,,由向量關系化為坐標關系,再結合拋物線的焦半徑公式即可計算【詳解】由得焦點,準線方程為,設,,由得則,化簡得所以故選:D10、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.11、C【解析】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,求得直線和圓的方程,利用點到直線的距離公式和圓的弦長公式,求得的長,進而求得持續(xù)監(jiān)測的時長.【詳解】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,如圖所示,則,,可得,圓記從處開始被監(jiān)測,到處監(jiān)測結束,因為到的距離為米,所以米,故監(jiān)測時長為分鐘故選:C.12、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項可得.【詳解】由題意可知此人每天走的步數(shù)構成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:14、11【解析】根據(jù)給定條件結合導數(shù)的幾何意義直接計算作答.【詳解】因曲線在點處的切線方程是,則,,所以.故答案為:1115、4【解析】根據(jù)拋物線的定義,列出方程,即可得答案.【詳解】由題意:拋物線的準線為,設點P的縱坐標為,由拋物線定義可得,解得,所以點P的縱坐標為4.故答案為:416、【解析】根據(jù)向量坐標意義及投影的定義得解.【詳解】因為向量,所以在軸上的投影向量為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)4.【解析】(1)根據(jù)圓圓心和半徑設圓的標準方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據(jù)題意寫出AB的方程,根據(jù)垂徑定理即可求出弦長;(3)根據(jù)題意求出AB經(jīng)過的定點Q,當CQ垂直于AB時,AB最短.【小問1詳解】由題,設圓C的標準方程為,則,解得.故圓C方程為;【小問2詳解】根據(jù)題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長;【小問3詳解】設,則,又直線方程為:,故直線過定點Q,設圓心C到直線距離為,則,故當最大時,最短,而,故與垂直時最大,此時,,∴線段長度的最小值4.18、【解析】由,為真,可得對任意的恒成立,從而分和求出實數(shù)的取值范圍,再由,,可得關于的方程有實根,則有,從而可求出實數(shù)的取值范圍,然后求交集可得結果【詳解】解:可化為.若:,為真,則對任意的恒成立.當時,不等式可化為,顯然不恒成立,當時,有且,所以.①若:,為真,則關于的方程有實根,所以,即,所以或.②又為真命題,故,均為真命題.所以由①②可得的取值范圍為.19、(1)(2)【解析】(1)根據(jù)冪函數(shù)的定義和單調(diào)性求解;(2)利用根式函數(shù)的定義域和值域求得集合A,B,再由是A的真子集求解.【小問1詳解】解:因為冪函數(shù)在上單調(diào)遞減,所以,解得.【小問2詳解】由,得,解得,所以,當時的值域為,所以,因為是成立的充分不必要條件,所以是A的真子集,,解得.20、(1)(2)【解析】(1)連接,由,利用橢圓的定義求解;(2)設點,,直線的方程為,與橢圓聯(lián)立,結合韋達定理,利用等面積法求解.【小問1詳解】解:連接,由題意知:,,即的軌跡為橢圓,其中,,,所以橢圓的標準方程為;【小問2詳解】設點,,直線的方程為,與橢圓聯(lián)立,消去整理得,顯然成立,故,,由橢圓定義得的周長為,則的面積,又由,得,從而得,即,整理得,解得,故,故直線的方程為.21、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件求出、、的值,可得出橢圓的標準方程;(2)設、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結合韋達定理可得出關于、所滿足的等式,然后化簡直線的方程,即可求得直線所過定點的坐標.【小問1詳解】解:橢圓上頂點到焦點距離,又橢圓離心率為,故,,因此,橢圓方程為.【小問2詳解】解:設、,由題意可知且,橢圓的右頂點為,則,,因為以為直徑的圓過橢圓的右頂點,所以有,則,即,聯(lián)立,,即,①由韋達定理得,,所以,,化簡得,即或,均滿足①式.當時,直線,恒過定點,舍去;當時,直線,恒過定點.綜上所述,直線過定點.【點睛】方法點睛:求解直線過定點問題常用方法如下:(1)“特殊探路,一般證明”:即先通過特殊情況確定定點,再轉化為有方向、有目的的一般性證明;(2)“一般推理,特殊求解”:即設出定點坐標,根據(jù)題設條件選擇參數(shù),建立一個直線系或曲線的方程,再根據(jù)參數(shù)的任意性得到一個關于定點坐標的方程組,以這個方程組的解為坐標的點即為所求點;(3)求證直線過定點,常利用直線的點斜式方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論