版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市外國(guó)語(yǔ)大學(xué)附屬大境中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.與圓和圓都外切的圓的圓心在()A.一個(gè)圓上 B.一個(gè)橢圓上C.雙曲線的一支上 D.一條拋物線上2.已知,為雙曲線的左,右頂點(diǎn),點(diǎn)P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.3.?dāng)?shù)列中前項(xiàng)和滿足,若是遞增數(shù)列,則的取值范圍為()A. B.C. D.4.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡(jiǎn)稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.5.已知等差數(shù)列的前項(xiàng)和為,若,,則()A. B.C. D.6.已知雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=17.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則8.圓與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切9.已知兩定點(diǎn)和,動(dòng)點(diǎn)在直線上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)P,則橢圓C的短軸的最小值為()A. B.C. D.10.已知數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足.若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是()A., B.C., D.11.已知點(diǎn)是橢圓上的任意點(diǎn),是橢圓的左焦點(diǎn),是的中點(diǎn),則的周長(zhǎng)為()A. B.C. D.12.等差數(shù)列中,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在R上連續(xù)且可導(dǎo),為偶函數(shù)且,其導(dǎo)函數(shù)滿足,則不等式的解集為_(kāi)__.14.如圖,正方形ABCD的邊長(zhǎng)為8,取正方形ABCD各邊的中點(diǎn)E,F(xiàn),G,H,作第2個(gè)正方形EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL.依此方法一直繼續(xù)下去.①?gòu)恼叫蜛BCD開(kāi)始,第7個(gè)正方形的邊長(zhǎng)為_(kāi)__;②如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么作到第n個(gè)正方形,這n個(gè)正方形的面積之和為_(kāi)__.15.已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求.16.設(shè)雙曲線C:的焦點(diǎn)為,點(diǎn)為上一點(diǎn),,則為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)等差數(shù)列的前項(xiàng)和為(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和18.(12分)在直三棱柱中,、、、分別為中點(diǎn),.(1)求證:平面(2)求二面角的余弦值19.(12分)已知橢圓經(jīng)過(guò)點(diǎn),橢圓E的一個(gè)焦點(diǎn)為.(1)求橢圓E的方程;(2)若直線l過(guò)點(diǎn)且與橢圓E交于兩點(diǎn).求的最大值.20.(12分)已知函數(shù)(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),證明21.(12分)已知展開(kāi)式中,第三項(xiàng)的系數(shù)與第四項(xiàng)的系數(shù)相等(1)求n的值;(2)求展開(kāi)式中有理項(xiàng)的系數(shù)之和(用數(shù)字作答)22.(10分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)動(dòng)圓的半徑為,然后根據(jù)動(dòng)圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設(shè)動(dòng)圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點(diǎn)的軌跡是雙曲線的一支故選:C2、A【解析】根據(jù)給定條件求出點(diǎn)P的坐標(biāo),再代入雙曲線方程計(jì)算作答.【詳解】由雙曲線對(duì)稱性不妨令點(diǎn)P在第一象限,過(guò)P作軸于B,如圖,因?yàn)榈妊切?,且頂角為,則有,,有,于是得,即點(diǎn),因此,,解得,所以雙曲線C的離心率為.故選:A3、B【解析】由已知求得,再根據(jù)當(dāng)時(shí),,,可求得范圍.【詳解】解:因?yàn)?,則,兩式相減得,因?yàn)槭沁f增數(shù)列,所以當(dāng)時(shí),,解得,又,,所以,解得,綜上得,故選:B.4、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因?yàn)殡p曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A5、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項(xiàng)公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.6、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.7、D【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運(yùn)算法則分別計(jì)算函數(shù)的導(dǎo)數(shù),即可判斷選項(xiàng).【詳解】A.若,則,故A錯(cuò)誤;B.若,則,故B錯(cuò)誤;C.若,則,故C錯(cuò)誤;D.若,則,故D正確.故選:D8、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結(jié)論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因?yàn)椋詢蓤A相交.故選:A.9、B【解析】根據(jù)題意,點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點(diǎn)共線時(shí),長(zhǎng)軸長(zhǎng)取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.10、D【解析】由等差數(shù)列通項(xiàng)公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對(duì)任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:11、A【解析】設(shè)橢圓另一個(gè)焦點(diǎn)為,連接,利用中位線的性質(zhì)結(jié)合橢圓的定義可求得結(jié)果.【詳解】在橢圓中,,,,如圖,設(shè)橢圓的另一個(gè)焦點(diǎn)為,連接,因?yàn)?、分別為、的中點(diǎn),則,則的周長(zhǎng)為,故選:A.12、C【解析】由等差數(shù)列的前項(xiàng)和公式和性質(zhì)進(jìn)行求解.【詳解】由題意,得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知條件可得圖象關(guān)于對(duì)稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因?yàn)闉榕己瘮?shù),所以的圖象關(guān)于軸對(duì)稱,所以的圖象關(guān)于對(duì)稱,因?yàn)?,所以?dāng)時(shí),,當(dāng)時(shí),,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:14、①.1②.【解析】根據(jù)題意,正方形邊長(zhǎng)成等比數(shù)列,正方形的面積等于邊長(zhǎng)的平方可得,然后根據(jù)等比數(shù)列的通項(xiàng)公式及等比數(shù)列的前n項(xiàng)和的公式即可求解.【詳解】設(shè)第n個(gè)正方形的邊長(zhǎng)為,第n個(gè)正方形的面積為,則第n個(gè)正方形的對(duì)角線長(zhǎng)為,所以第n+1個(gè)正方形的邊長(zhǎng)為,,∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,,∴,即第7個(gè)正方形的邊長(zhǎng)為1;∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,故答案為:1;.15、(1);(2).【解析】(1)根據(jù),且,,成等比數(shù)列,利用等比中項(xiàng)由,求得公差即可.(2)由(1)得到,再利用裂項(xiàng)相消法求解.【詳解】(1)設(shè)數(shù)列的公差為d,因?yàn)?,且,,成等比?shù)列,所以,即,解得或(舍去),所以數(shù)列的通項(xiàng)公式;(2)由(1)知:,所以.【點(diǎn)睛】方法點(diǎn)睛:求數(shù)列的前n項(xiàng)和的方法(1)公式法:①等差數(shù)列的前n項(xiàng)和公式,②等比數(shù)列的前n項(xiàng)和公式;(2)分組轉(zhuǎn)化法:把數(shù)列的每一項(xiàng)分成兩項(xiàng)或幾項(xiàng),使其轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列,再求解(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差求和,正負(fù)相消剩下首尾若干項(xiàng)(4)倒序相加法:把數(shù)列分別正著寫(xiě)和倒著寫(xiě)再相加,即等差數(shù)列求和公式的推導(dǎo)過(guò)程的推廣(5)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)之積構(gòu)成的,則這個(gè)數(shù)列的前n項(xiàng)和用錯(cuò)位相減法求解.(6)并項(xiàng)求和法:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類型,可采用兩項(xiàng)合并求解16、14【解析】利用雙曲線的定義求解即可【詳解】由,得,則,因?yàn)辄c(diǎn)為上一點(diǎn),所以,因?yàn)?,所以,解得或(舍去),故答案為?4三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)等差數(shù)列前n項(xiàng)和求和公式求出首項(xiàng)和公差,進(jìn)而求出通項(xiàng)公式;(2)結(jié)合(1)求出,再令得出數(shù)列的正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而結(jié)合等差數(shù)列求和公式求得答案.【小問(wèn)1詳解】設(shè)等差數(shù)列的首項(xiàng)和公差分別為和,∴,解得:所以.【小問(wèn)2詳解】,所以.當(dāng);當(dāng),當(dāng),時(shí),,當(dāng)時(shí),.綜上:.18、(1)見(jiàn)解析;(2)【解析】(1)取中點(diǎn),連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點(diǎn),根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系,則.,再分別求得平面和平面的一個(gè)法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點(diǎn),連接,易知,、分別為的中點(diǎn),∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立如圖所示的空間直角坐標(biāo)系,如圖所示:則∴,設(shè)平面的法向量為,則,即,取,得,易知平面的一個(gè)法向量為,∴,∴二面角的余弦值為【點(diǎn)睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)(2)【解析】(1)設(shè)橢圓的左,右焦點(diǎn)分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當(dāng)直線的斜率存在時(shí),設(shè),,,,,聯(lián)立直線與橢圓方程,利用韋達(dá)定理以及弦長(zhǎng)公式得到弦長(zhǎng)的表達(dá)式,再通過(guò)換元利用二次函數(shù)的性質(zhì)求解最值即可【小問(wèn)1詳解】依題意,設(shè)橢圓的左,右焦點(diǎn)分別為,則,,,,橢圓的方程為【小問(wèn)2詳解】當(dāng)直線的斜率存在時(shí),設(shè),,,,由得由得由,得設(shè),則,當(dāng)直線的斜率不存在時(shí),,的最大值為20、(1)單調(diào)遞減,在單調(diào)遞增;(2)見(jiàn)解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負(fù)即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問(wèn)1詳解】時(shí),,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問(wèn)2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點(diǎn),且,當(dāng)時(shí),,g(x)單調(diào)遞減,當(dāng)時(shí),,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),而,∴,∴,即,∴當(dāng)時(shí),.【點(diǎn)睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過(guò)程中設(shè)計(jì)到隱零點(diǎn)的問(wèn)題,需要掌握隱零點(diǎn)處理問(wèn)題的常見(jiàn)思路和方法.21、(1)8;(2).【解析】(1)由題設(shè)可得,進(jìn)而寫(xiě)出第三、四項(xiàng)的系數(shù),結(jié)合已知列方程求n值即可.(2)由(1)有,確定有理項(xiàng)的對(duì)應(yīng)k值,進(jìn)而求得對(duì)應(yīng)項(xiàng)的系數(shù),即可得結(jié)果.小問(wèn)1詳解】由題意,二項(xiàng)式展開(kāi)式的通項(xiàng)公式所以第三項(xiàng)系數(shù)為,第四項(xiàng)系數(shù)為,由,解得,即n的值為8【小問(wèn)2詳解】由(1)知:當(dāng),3,6時(shí),對(duì)應(yīng)的是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- BIM工程師-全國(guó)《BIM應(yīng)用技能資格》名師預(yù)測(cè)試卷3
- 二年級(jí)下冊(cè)數(shù)學(xué)導(dǎo)學(xué)案
- 花園裙樓幕墻工程施工方案
- 農(nóng)村電網(wǎng)改造升級(jí)的技術(shù)路徑
- 老式鐘表走時(shí)不準(zhǔn)校正修復(fù)
- 海藻葉片形態(tài)特征與光合作用
- 新視野大學(xué)英語(yǔ)3第三版 大學(xué)英語(yǔ)視聽(tīng)說(shuō)3答案
- 高一化學(xué)教案:專題第二單元第二課時(shí)化學(xué)反應(yīng)中的熱量變化(二)
- 2024高中物理第一章電場(chǎng)章末質(zhì)量評(píng)估一含解析粵教版選修3-1
- 2024高中語(yǔ)文第1單元論語(yǔ)蚜第1課天下有道丘不與易也訓(xùn)練含解析新人教版選修先秦諸子蚜
- 2024版房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)內(nèi)容解讀
- 學(xué)校文印室外包服務(wù) 投標(biāo)方案(技術(shù)方案)
- 九防突發(fā)事件應(yīng)急預(yù)案
- 脫水篩 說(shuō)明書(shū)
- 建筑公司年度工作總結(jié)及計(jì)劃(6篇)
- 2023年昆明貴金屬研究所招聘筆試模擬試題及答案解析
- 硫酸裝置試生產(chǎn)方案
- DB11T 1944-2021 市政基礎(chǔ)設(shè)施工程暗挖施工安全技術(shù)規(guī)程
- 中國(guó)農(nóng)業(yè)核心期刊要目概覽
- 好聽(tīng)簡(jiǎn)單的鋼琴譜
- 技術(shù)咨詢合同書(shū)(浙江省科學(xué)技術(shù)廳監(jiān)制)
評(píng)論
0/150
提交評(píng)論