版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省邢臺一中2025屆數學高二上期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設拋物線的焦點為F,過點F且垂直于x軸的直線與拋物線C交于A,B兩點,若,則()A1 B.2C.4 D.82.點,是橢圓的左焦點,是橢圓上任意一點,則的取值范圍是()A. B.C. D.3.在平面直角坐標系中,直線+的傾斜角是()A. B.C. D.4.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確5.一輛汽車做直線運動,位移與時間的關系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.36.如圖,A,B,C三點不共線,O為平面ABC外一點,且平面ABC中的小方格均為單位正方形,,,則()A.1 B.C.2 D.7.已知二次函數交軸于,兩點,交軸于點.若圓過,,三點,則圓的方程是()A. B.C. D.8.下列求導錯誤的是()A. B.C. D.9.已知雙曲線的左焦點為,,為雙曲線的左、右頂點,漸近線上的一點滿足,且,則雙曲線的離心率為()A. B.C. D.10.方程所表示的曲線為()A.射線 B.直線C.射線或直線 D.無法確定11.“楊輝三角”是中國古代重要的數學成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數陣,記為圖中虛線上的數1,3,6,10,…構成的數列的第n項,則的值為()A.1225 B.1275C.1326 D.136212.某中學高一年級有200名學生,高二年級有260名學生,高三年級有340名學生,為了了解該校高中學生完成作業(yè)情況,現用分層抽樣的方法抽取一個容量為40的樣本,則高二年級抽取的人數為()A.10 B.13C.17 D.26二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線,的左、右焦點分別為、,且的焦點到漸近線的距離為1,直線與交于,兩點,為弦的中點,若為坐標原點)的斜率為,,則下列結論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形14.如圖,在棱長為1的正方體中,點M為線段上的動點,下列四個結論:①存在點M,使得直線AM與直線夾角為30°;②存在點M,使得與平面夾角的正弦值為;③存在點M,使得三棱錐體積為;④存在點M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結論正確的有______.(填上正確結論的序號)15.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.16.根據如下樣本數據34567402.5-0.50.5-2得到的回歸方程為若,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是首項為1,公差不為0的等差數列,且成等比數列.數列的前項的和為,且滿足.(1)求數列的通項公式;(2)求數列的前項和.18.(12分)如圖1,已知矩形中,,E為上一點且.現將沿著折起,使點D到達點P的位置,且,得到的圖形如圖2.(1)證明為直角三角形;(2)設動點M在線段上,判斷直線與平面位置關系,并說明理由.19.(12分)已知橢圓:的離心率為,且經過點.(1)求的方程;(2)設的右焦點為F,過F作兩條互相垂直的直線AB和DE,其中A,B,D,E都在橢圓上,求的取值范圍.20.(12分)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直線BC與平面PCD所成角的正弦值為.(1)求證:平面PCD⊥平面PAC;(2)求平面PAB與平面PCD所成銳二面角的余弦值.21.(12分)設等差數列的前項和為,已知,.(1)求數列的通項公式;(2)求數列的前項和.22.(10分)已知橢圓經過點,(1)求橢圓的方程;(2)已知直線的傾斜角為銳角,與圓相切,與橢圓交于、兩點,且的面積為,求直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據焦點弦的性質即可求出【詳解】依題可知,,所以故選:C2、A【解析】由,當三點共線時,取得最值【詳解】設是橢圓的右焦點,則又因為,,所以,則故選:A3、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B4、B【解析】由向量數量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.5、D【解析】首先求出函數的導函數,依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導數在物理中的應用,屬于基礎題.6、B【解析】根據向量的線性運算,將向量表示為,再根據向量的數量積的運算進行計算可得答案,【詳解】因為,所以=,故選:B.7、C【解析】由已知求得點A、B、C的坐標,則有AB的垂直平分線必過圓心,所以設圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因為圓過,,三點,所以AB的垂直平分線必過圓心,所以設圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C8、B【解析】根據導數運算求得正確答案.【詳解】、、運算正確.,B選項錯誤.故選:B9、C【解析】由雙曲線的漸近線方程和兩點的距離公式,求得點的坐標和,在中,利用余弦定理,求得的關系式,再由離心率公式,計算即可求解.【詳解】由題意,雙曲線,可得,設在漸近線上,且點在第一象限內,由,解得,即點,所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據離心率的定義求解離心率;2、齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.10、C【解析】將方程化為或,由此可得所求曲線.【詳解】由得:或,即或,方程所表示的曲線為射線或直線.故選:C.11、B【解析】觀察前4項可得,從而可求得結果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B12、B【解析】計算出抽樣比可得答案.【詳解】該校高中學生共有名,所以高二年級抽取的人數名.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設,,利用面積求出點的坐標,再求邊長,求出可判斷④【詳解】解:設,,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點到漸近線的距離為1,設到漸近線的距離為,則,即,,故①錯誤,,若,不妨設在右支上,,又,,則的面積為,故③不正確;設,,,,將代入雙曲線,得,,根據雙曲線的對稱性,不妨取點的坐標為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④14、②③【解析】對①:由連接,,由平面,即可判斷;對③:設到平面的距離為,則,所以即可判斷;對④:以為坐標原點建立如圖所示的空間直角坐標系,設,利用向量法求出與,比較大小即可判斷;對②:設與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯誤;對③:設到平面的距離為,則,所以,故③正確;對④:以為坐標原點建立如圖所示的空間直角坐標系,設,則,0,,,0,,,,,,,,所以,,,,,,設平面的法向量為,,,則,即,取,,,又,1,是平面的一個法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯誤對②:由④的解析知,,,,設平面的法向量為,則,即,取,則,設與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.15、-1【解析】根據給定條件設出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內,設,,由兩式相減得:,而,于是得,即,所以.故答案為:16、-1.4##【解析】分別求出的值,即得到樣本中心點,根據樣本中心點一定在回歸直線上,可求得答案.【詳解】,則得到樣本中心點為,因為樣本中心點一定在回歸直線上,故,解得,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)設數列公差為,由成等比數列求得,可得.利用求得;(2)利用錯位相減求和即可.【小問1詳解】設數列公差為,由成等比數列有:,解得:,所以,數列,當即,,解得:,當時,有,所以,得:.又,所以數列為以為首項,公比為的等比數列,所以數列的通項公式為:.【小問2詳解】,,,得,,化簡得:.18、(1)證明見解析(2)答案不唯一,見解析【解析】(1)利用折疊前后的線段長度及勾股定理求證即可;(2)動點M滿足時和,但時兩種情況,利用線線平行或相交得到結論.【小問1詳解】在折疊前的圖中,如圖:,E為上一點且,則,折疊后,所以,又,所以,所以為直角三角形.小問2詳解】當動點M在線段上,滿足,同樣在線段上取,使得,則,當時,則,又且所以,且,所以四邊形為平行四邊形,所以,又平面,所以此時平面;當時,此時,但,所以四邊形為梯形,所以與必然相交,所以與平面必然相交.綜上,當動點M滿足時,平面;當動點M滿足,但時,與平面相交.19、(1)(2)【解析】(1)根據橢圓的離心率為,及經過點建立等式可求解;(2)分斜率存在與不存在兩種情況進行討論,當斜率存在時,計算與后再求范圍即可.【小問1詳解】由題意知的離心率為,整理得,又因為經過點,所以,解得,所以,因此,的方程為.小問2詳解】由已知可得,當直線AB或DE有一條的斜率不存在時,可得,或,,此時有或.當AB和DE的斜率都存在時且不為0時,設直線:,直線:,,,,由得,所以,,所以,用替換可得.所以,綜上所述,的取值范圍為.20、(1)證明見解析(2)【解析】(1)取的中點,連接,證明,由線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可證得結論,(2)過點作于,以為原點,建立空間直角坐標系,如圖所示,設,先根據直線BC與平面PCD所成角的正弦值為,求出,然后再求出平面PAB的法向量,利用向量的夾角公式可求得結果【小問1詳解】證明:取的中點,連接,因為AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四邊形為平行四邊形,所以,所以,因為平面,平面,所以,因為,所以平面,因為平面,所以平面平面,【小問2詳解】過點作于,以為原點,建立空間直角坐標系,如圖所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,則,所以設因為平面,所以所以,設平面的法向量為,則,令,則,因為直線BC與平面PCD所成角的正弦值為,所以,解得,所以,,設平面的法向量為,因為,所以,令,則,所以,所以平面PAB與平面PCD所成銳二面角的余弦值為21、(1)(2)【解析】(1)根據已知條件求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度采石場礦山地質環(huán)境監(jiān)測與評估合同模板3篇
- 二零二五年度酒吧代駕業(yè)務承包管理合同4篇
- 二零二四年兒童看護與教育一體化服務協議3篇
- 個人股東簽訂入股合同
- 物業(yè)管理服務2025年度質量監(jiān)控合同3篇
- 二零二五年度河道整治工程土方工程承包合同3篇
- 超詳細(2025版)智能電網建設合同(上)2篇
- 2025年度車輛轉讓附帶二手車交易手續(xù)費減免協議4篇
- 2025年度城市綜合體項目開發(fā)合作協議模板4篇
- 二零二五年度水電安裝工程合同條款解釋與適用合同樣本4篇
- 企業(yè)內部客供物料管理辦法
- 婦科臨床葡萄胎課件
- 藥學技能競賽標準答案與評分細則處方
- 2025屆高考英語 716個閱讀理解高頻詞清單
- 報建協議書模板
- 汽車配件購銷合同范文
- 貴州省2024年中考英語真題(含答案)
- 施工項目平移合同范本
- (高清版)JTGT 3360-01-2018 公路橋梁抗風設計規(guī)范
- 胰島素注射的護理
- 云南省普通高中學生綜合素質評價-基本素質評價表
評論
0/150
提交評論